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October 16, 2023

0.1 Best Practices for Students and Instructors

0.1.1 Take Ownership of your Education

Read this text, and everything else, with a critical eye. Don’t fall for the appeal to authority fallacy, believing that the author
of a book is an expert and therefore must be right. It’s almost certainly true that someone who wrote a book about a subject
knows much more than you do, but they are not infallible. They make mistakes and still have a few misconceptions despite all
the experience and research that went into writing the book. The only way to be certain of any assertion is by checking the facts
for yourself, or applying sound logic to infer conclusions that available facts do not indicate directly.

On that note, don’t blame your teachers, book authors, or anyone else for your misconceptions, even if they did misinform you.
Doing so only highlights gullibility. To quote Obi-Wan Kenobi: "Who’s the more foolish, the fool or the fool who follows?"

Go well beyond what you learn in your classes. Your teachers know a tiny fraction of what you’ll need to know during your
career. They only have time to teach you a tiny fraction of what they know. If all you know when you graduate is what you
were spoon-fed in lectures, you won’t have much to offer your employer. All employers care about grades, but the better ones
care more about what you’ve done beyond your classes. This shows a real interest in your field and shows the ability to solve
problems independently. Develop this ability while in college so that potential employers will see you as an asset to their team.

0.1.2 Note to Lecturers

Instructors should maintain a reasonable pace in lectures. Be thorough, but don’t rush. Give students the opportunity to ask
questions during lecture. On the other hand, don’t try to make every student understand perfectly during lectures. This is not
possible. Most learning comes from practice outside of class. If the course includes labs or discussions, allow them to serve
a purpose as well. The purpose of lectures is to give students material to think about and practice, so that the time they spend
practicing outside of lecture will be productive.

If there is a lab/discussion associated with this course, one simple example should suffice for each topic in lecture. Additional
examples can be covered in lab/discussion and in the homework. If there is no lab/discussion, then an additional example may
be appropriate in some cases, but students should still be expected to practice outside of class.

0.1.3 Making the Most of Class Time

Learning results from TIME and REPETITION. Lectures only provide material for students to practice. Don’t expect to leave
a lecture, discussion, or lab session of any class with a deep understanding of the material. Take detailed notes in class, read
the course materials, and then immediately start practicing by trying to put it to use. We provide an extensive set of practice
questions for this very purpose. Without practice to cement in the concepts, you will forget quickly. Use it or lose it.

Study early so your brain has time to digest the material. Study often to reinforce the neural connections that make up long-
term memory. The learning process literally involves rewiring your brain, which is a slow biological process that cannot be
accelerated.

Note OK, that’s a white lie: It has been shown that traumatic experiences result in long-term memory comparable to an
extensive amount of practice. However, scaring the pants off of students is not a practical way to help them learn.

Everyone should take pencil and paper notes during lectures rather than rely on online materials. Take notes on everything, even
if you think you know it already. Review these notes first to ensure there are no major gaps in your knowledge. The act of
writing or explaining something has a powerful effect on memory and understanding. Writing something once does as much for
your memory and understanding as reading it ten times. Don’t sit back and be passive about your education. That strategy will
backfire. You’ll learn much more with less effort by actively engaging.
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0.1.4 Run the Whole Race

Make sure you get off to a good start so the rest of the semester won’t be a struggle to catch up.

If you do have a good start, don’t fall victim to the common tendency to think you can coast for a while. Some topics will be
harder for you than the ones you just aced. What’s hard varies from student to student, so ignore what others are saying about it,
and just put in the amount of effort that you need to. Be thorough about studying every topic throughout the semester, regardless
of how you’ve done on previous topics. If you just do that, you’ll do well overall.

0.1.5 Abandon your ego

In general, if you want to know whether you want someone in your life, observe them for a while and see if they can laugh at
themselves. If not, smile, walk away, and don’t look back.

One of the most important goals in any scientific education is to get over the fear of being wrong. Ego is the enemy of real
science and engineering. Abandon it. Learn to feel comfortable making suggestions and having them shot down. Maybe it was a
good suggestion and others just aren’t seeing it. Maybe it was a dumb idea and you’re not seeing it. Don’t get upset either way.
Laugh it off for now, keep thinking about the problem, and let the situation play out over time.

Transition your thinking from "My code sucks, what am I doing in this field?" to "My code sucks, how can I improve it?".
Top-notch scientists and engineers are completely humble, emotionless, and objective about their work. They abandon bad ideas
without hesitation, embarrassment, remorse, and focus all their energy on finding better ones. They are grateful when others
point out their mistakes.

The sooner we let go of bad ideas, the less time we will waste trying to make them work, and the more time we can spend at the
beach. A happy, balanced engineer will accomplish more in 8 hours a day than one who struggles for 16 hours a day and has no
fun because [s]he can’t admit a mistake. Take your pick. It’s entirely up to you which one you want to be.

All that really matters is that we keep moving forward. It won’t always be quickly enough to get straight A’s, and that’s fine. Just
put in a solid effort and you will grow as a result. Growth is more important than grades.

0.1.6 Why do Quality Work?

Every customer wants a quality product, but what’s the real motivation for creating them? Why should we write fast, reliable
programs? Why design fast, reliable, inexpensive hardware? So the boss will give us a raise? Probably not. Most bosses wouldn’t
recognize quality work if it licked their face. So we’ll be admired by our peers? No, doesn’t really work. Most of them will just
become jealous and trash you on social media.

Think about how often you’ve wasted time waiting for something that seems inexplicably slow, or worse, breaks down so you
have to start over. As a result, you missed happy hour, your kid’s soccer game, or something else you were really looking forward
to. Low quality products cause massive amounts of wasted time and aggravation. The best reason to do quality work is to help
everybody (including yourself) get their work done quickly and correctly, so we can all spend more time with our families and
friends. Quality work makes everybody’s lives better. This is how you can have a positive impact and garner real appreciation as
an engineer.

So how to we get there? Some would say "take pride in your work". But this often backfires, because it depends on what makes
an engineer proud. Many engineers are proud of how clever they are. While a normal person would say "If it ain’t broke, don’t
fix it.", many engineers say "If it ain’t broke, it doesn’t have enough features yet.". Clever engineers make things needlessly
complicated to prove that they’re clever. Wise engineers make things as simple as possible so they will be reliable, inexpensive,
and easy to use. Remember this simple equation:

cleverness * wisdom = constant

Remember KISS (Keep It Simple, Stupid). If you follow this ideal, you’ll be a top-notch engineer.

0.1.7 Stick to the course materials

The materials provided for this course are all you should need to succeed. Do not trust alternative information from web forums
such as stackoverflow.com, geeksforgeeks.org, etc. These sites do not provide curated information. Anyone with a web browser
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can post their opinions there. Most of the information on these sites ranges from suboptimal to complete rubbish. If you really
must look to web forums for information, be sure to verify any assertions you find there via experimentation or more reliable
sources. Never believe the first answer you find on a web forum.

Outside sources should only be used to help you understand the course materials, and rarely for this purpose. They should never
be trusted as a substitute. If anything in the course materials is unclear, it is better to contact the instructor than to use outside
materials for clarification. This will prevent you from getting things wrong, and will help the instructor improve the course
materials.

If there is anything in the course materials you don’t understand, RISE TO THE CHALLENGE IMMEDIATELY and make sure
you master the material. Don’t try to work around it by finding a quicker, easier way to get the homework done. Doing the latter
will only cause you to fall behind in the class and you will not do well in the end.

0.1.8 Homework, quiz, and exam format

Most questions are short answer, coding, or diagram format rather than true/false or multiple choice. The act of explaining a
concept goes a long way toward helping you remember and understand it, so writing out the answer in your own words is a far
better learning experience than picking the answer out of a list.

In fact, you can help yourself understand the material better by explaining it to your mom, your cat, or anyone else with the
patience to listen to nerdy ramblings about computer science.

Also, the real world is not multiple choice. Good luck finding a job where your boss solves all the problems and pays you to
pick the correct solution from among several incorrect ones. The real world is open book, but it also has time limits, so you do
not want to rely on references entirely. You need important knowledge internalized in order to be productive. The goal here is to
practice for that scenario.

0.2 Course Logistics

0.2.1 Purpose of this Course

This is a course about Unix systems programming in C. You will learn about Unix, the only existing set of standards for portable
operating systems. You will then learn the C programming language with the aim of maximizing performance and portability.
Finally, you will learn how to write C programs utilizing Unix standard libraries, which can be run on virtually any modern
hardware and operating system.

Students are expected to have some experience with programming, such as one or two semesters of general programming at the
college level. It is assumed that students have never touched a Unix system and do not know what binary is. As such, they should
not be expected to get into advanced topics such as sockets during this semester. Learning the Unix command line, the basics of
number systems such as binary, octal, and hexadecimal, and the C programming language will fill most of the semester. There
should be some time (at least a couple weeks) remaining at the end to introduce Part III of this text, the standard libraries, and
teach the concepts of creating processes and threads and communicating via pipes, or maybe shared memory.

0.2.2 Using this Lecture Outline

First, be aware that this document is updated frequently. Do not print it, as it will likely be obsolete before the print job finishes.
Get the latest revision every time you read to ensure that you have the latest material and revisions.

The chapters and sections in this outline use the same names as corresponding chapters and sections in the book. They are also
in the same order to make things easy to find. This outline is your guide to which material from the book you are expected to
know for quizzes and exams. Material here is presented in an abbreviated format more detailed than a slide presentation, but far
less verbose than the book.

Note This is only an outline. You must read the corresponding sections in the book in order to learn the required material.
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This outline is also an addendum to the book wherever something has changed since the book’s publication, or to clarify things
that have not changed but could have been explained better in the book. C and Unix are extremely stable products, so there are
very few differences of interest between the publication date in 1999 and today. The few important differences are noted here.

This outline does not contain a complete record of what happened in lecture and are not a substitute for attending class or reading
the book. Students are expected to know all material covered in class, which may include material and details found neither in
this outline nor in the book.

Students are strongly advised to read this outline and the book sections BEFORE each class. This will enable you to get much
more out of lecture as well as contribute to the conversation. Thoroughly study this outline and your hand-written notes from
lecture to prepare for quizzes and exams.

Use the examples in the book as practice. Don’t just read them: DO them. Type them in and run them, modify them, write similar
programs just for curiosity’s sake.

Homework questions include material covered in lecture and material that is only in the book. Read each section immediately
before doing the homework for that section, so you can easily find the right answers. This learning process is much like the code
implementation process: Write a little code, then test it before moving on.

0.2.3 Practice Problem Instructions

• Practice problems are designed to help you think about and verbalize the topic, starting from basic concepts and progressing
through real problem solving.

• Use the latest version of this document.

• Read one section of this document and corresponding materials if applicable.

• Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

• Do the practice problems on your own. Do not discuss them with other students. If you want to help each other, discuss
concepts and illustrate with different examples if necessary. Coming up with the correct answer on your own is the only way
to be sure you understand the material. If you do the practice problems on your own, you will succeed in the subject. If you
don’t, you won’t.

If you’re still not clear after doing the practice problems, wait a while and do them again. This is how athletes perfect their
game. The same strategy works for any skill.

• Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory and
understanding. Copying does not, and it demonstrates a lack of interest in learning.

Answer questions completely, but in as few words as possible. Remove all words that don’t add value to the explanation.
Brevity and clarity are the most important aspects of good communication. Unnecessarily lengthy answers are often an attempt
to obscure a lack of understanding and may lead to reduced grades. "If you can’t explain it simply, you don’t understand it well
enough." -- Albert Einstein

• Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE BEST OF YOUR ABILITY. In
doing so, you only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

• ALWAYS explain your answer. No exceptions. E.g., justify all yes/no or other short answers, show your work or indicate by
other means how you derived your answer for any question that involves a process, no matter how trivial it may seem, draw a
diagram to illustrate if necessary. This will improve your understanding and ensure full credit for the homework.

• Verify your own results by testing all code written, and double checking short answers and computations. In the working
world, no one will check your work for you. It will be entirely up to you to ensure that it is done right the first time.

• Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

• For programming questions, adhere to all coding standards as defined in the text, e.g. descriptive variable names, consistent
indentation, etc.
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0.2.4 Remote Unix Servers and the Command Line Interface

There are two general categories of user interfaces:

• Command driven (the user types in commands), also known as a CLI (Command Line Interface)

• Menu driven (the user selects from among items on the screen). This includes Graphical User Interfaces (GUIs), where menu
items may be icons selected with a mouse rather than just text.

CLIs always have been and always will be an important part of computer science for the following reasons:

• Development of a GUI is an order of magnitude more costly and hence not feasible in many areas, such as scientific computing,
where funding and programmer talent are limited.

• GUIs are not usually feasible for using remote servers over slow network connections such as WiFi, home Internet connections,
or long distances. Access to virtual machine instances on cloud servers is often entirely CLI-based.

• GUIs are preferable for simple systems such as an ATM (automatic teller machine), but cumbersome for complex systems
with too much functionality to display on one screen. The user must then navigate a system of submenus to find the functions
they need. For this reason, CAD (Computer Aided Design) programs, which are intensively graphical by nature, include a CLI.
Experienced CAD users prefer the CLI because it allows them to manipulate the design much faster.

As part of this course, you will learn to use the Unix command line, possibly via SSH (Secure Shell). This experience will be
essential to anyone working with HPC (High Performance Computing) clusters or certain types of cloud services in the future.
While there are various user interfaces for working with remote computers, the command line is the only available interface for
many tasks. Mastery of the Unix command line will open many additional doors during your career as a computer scientist. A
small sample of potential careers are listed below.

• Unix Systems Programmer: Involves knowledge of Unix systems management, shell scripting, possibly other languages such
as Perl, Python, and C. Many jobs available in both private sector and academia. Academic jobs tend to pay less, but are
usually more interesting and offer more flexibility. Potential employers include Google and Yahoo (largely Linux-based),
Netflix (largely FreeBSD-based), most universities, national laboratories, etc.

• Bioinformatics: Considered the wild west of scientific computing, this is a rapidly growing field dealing with big data issues.
There are many opportunities in academic research as well as biotech companies. Expect a high salary and very challenging
work.

• HPC Systems Manager: Requires advanced skills in Unix systems management and knowledge of high-speed networking
technologies. Opportunities exist in academia and the private sector.

• HPC Facilitator: Facilitators train and assist end-users of HPC resources. They are experts in using HPC clusters, though not
necessarily in managing them.

0.2.5 Programming Assignments

There will be several programming assignments throughout the semester, which will require putting multiple concepts together.
The weekly homework will help you master these basic concepts. If you do the homework properly, then the programming
assignments will simply be exercises in integrating those concepts.

Programs are graded on strict quality measures (well-chosen identifier names, code indentation and other formatting, meaningful
comments, etc.) and execution (correct output for correct input, graceful handling of incorrect input).

To use a remote Unix server, you will need a terminal emulator and an ssh client to access the remote server from a PC (see
Figure 1).
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Figure 1: Using SSH to log into a Remote Server

Access to the remote server from off campus may require a VPN client. You can use the commercial VPN client provided by your
IT department, or the open source OpenConnect or GlobalProtect OpenConnect, which can be installed via Debian packages
and FreeBSD ports (see Figure 2), and possibly other package managers.

Note GlobalProtect OpenConnect daemonizes a program called gpservice to maintain the connection to the VPN server. As
a daemon, gpservice continues to run after the GUI gpclient is terminated. If left running for a long time, the connection can
go stale, resulting in failed connections. You may need to manually terminate the daemon by running pkill gpservice as root,
so that a new VPN connection is established next time you run gpclient.

Figure 2: GlobalProtect-OpenConnect VPN Client

Note that testing on multiple platforms is a good idea and should always be done for professional programming. However, testing
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on additional platforms almost always reveals more bugs. If you do not have time to debug your programs twice, develop them
on the remote server provided for this course.

A text-based editor such as emacs or a text-based IDE (Integrated Development Environment) such as APE (Another Program-
mer’s Editor, Figure 3) will work well when programming remotely over an SSH connection. Some graphical editors such as
Eclipse will likely be sluggish.

Figure 3: APE IDE

0.2.6 Homework due BEFORE the First Lab

For courses utilizing a remote Unix server, students should have a working terminal emulator and SSH client on their laptop
BEFORE the first lab. Your successful login to the Unix server will be checked by the instructor during the first lab session.

Caution
THIS MUST BE DONE BEFORE THE FIRST LAB. It cannot be done during lab, since multiple students downloading
packages at the same time would overwhelm the WiFi access point. The task is very simple, but involves downloading
a significant volume of program files for Windows users.
Do this assignment IMMEDIATELY and ask for help if you run into any problems. Instructors will be available to help.

Students MUST have a working terminal emulator and SSH client on their laptop BEFORE the first lab session. Before your
first lab, verify that you can open a terminal window on your laptop and run the ssh command. Just type "ssh" into the terminal
window and you should see something like the following:

shell-prompt: ssh
usage: ssh [-46AaCfGgKkMNnqsTtVvXxYy] [-B bind_interface]

[-b bind_address] [-c cipher_spec] [-D [bind_address:]port]
[-E log_file] [-e escape_char] [-F configfile] [-I pkcs11]
[-i identity_file] [-J [user@]host[:port]] [-L address]
[-l login_name] [-m mac_spec] [-O ctl_cmd] [-o option] [-p port]
[-Q query_option] [-R address] [-S ctl_path] [-W host:port]
[-w local_tun[:remote_tun]] destination [command [argument ...]]

If you see something like "ssh: command not found", then you need to install an SSH package.

Most BSD and GNU/Linux distributions, and macOS come with terminal emulator and SSH preinstalled. Windows users can
install them as part of Cygwin in about 15 minutes, following the instructions in the "Connecting to the Remote Server" section
of the lab manual provided on Canvas (c-unix-lab.pdf).
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Also BEFORE the first lab, be sure to verify that you can connect to WiFi on campus.

This assignment should not take much more than 15 minutes, but no task is too simple to fail, so do it LONG BEFORE YOUR
LAB SESSION so that you will have time to look for a solution or ask for help before it is too late.

Note All assignments for CS 337 are to be done individually, except this one. The assignment in this case is simply to have a
terminal emulator and ssh command on your laptop before the first lab session. If someone helped you do this, that’s fine as
far as credit for the assignment, though it may be a sign that you need to up your game. This should be easy for any computer
science student, following the instructions in the lab manual provided on Canvas (c-unix-lab.pdf). Better to ask an instructor or
a friend for help than to fail to complete the assignment, though.
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Chapter 1

Introduction

Note The introduction in the book contains many dated examples, e.g. OS/2, Windows 95, Windows NT, Borland C. However,
the concepts illustrated by these examples still apply to their more modern equivalents. In most other parts of the book, I took
care to avoid using dated material, and very little has changed since the book’s publication.

1.1 How to Proceed

Unix "man pages" (demonstrate) contain a wealth of detailed information on Unix commands and C functions.

They are written to serve as references, rather than tutorials, so a book is a much better way to get started. After reading the
book, you should be ready to tackle the man pages.

Components of each chapter:

• What to read first (prerequisite knowledge)

• Essentials

• Related performance discussion

• Related portability discussion

• Advanced topics (only some will be covered in this class)

1.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why do we need a book when we can just learn Unix and C functions from the man pages?

2. What is the best way to utilize the examples in the book?

3. Where does proficiency come from?
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1.2 Why use C?

1.2.1 C Advantages

• C is Fast: It is the fastest among portable high-level languages, nearly as fast as hand-optimized assembly language.

Addendum to book: C++ code performance has improved since publication of the book. It now rivals the speed of C and
outperforms Fortran and Pascal in many cases.

Table 1.1 shows the relative performance of numerous languages

• C is powerful: Literally any code can be written in C, including code that could only otherwise be done in assembly language,
which is not portable. We can also write complex application programs in C.

C is sometimes criticized for being too "low-level", suggesting that we have to write more code to achieve the same thing as a
high-level language. This is not generally true, however. High-level features in other languages can usually be replaced by a
simple library function call in C. Whether a feature is part of the language or part of a library makes no difference to how easy
it is to use.

% In Matlab, matrix multiplication is built into the language
product = matrix1 * matrix2;

// In C, matrix multiplication is not supported by the
// language, but there are many prewritten libraries
// containing functions that we can use
matrix_multiply(product, matrix1, matrix2);

• C is Portable: C code will run on more hardware platforms than any other language, from small embedded controllers to
massive supercomputers.

• C is small and flexible. The design philosophy was not to include any feature in the language itself that can be reasonably well
provided by a library function. As a result, the C language is very small and easy to master. Growth as a C programmer then
shifts to learning about the vast number of available libraries used in your field.

C popularized the small and extensible philosophy, which aims at keeping software systems simple, while allowing the capa-
bilities to be easily extended by separate modules. In the case of C, the separate modules are library functions. Other software
may use plugins, but the concept is the same.

• C is popular: C is among the most popular languages in terms of the number of programs written in each. Most modern
languages are based on C. Hence, learning C gets you started with C++, Java, etc.

• C is stable: Code written in many languages ceases to function after several years as language features are deprecated and
eventually removed. C, on the other hand, has been stable for decades and is unlikely to change in the future in any way that
will break existing programs. It is a WORF (write once, run forever) programming language.

You can do object-oriented programming in C. In fact, an object-oriented design can be implemented in any language, and it can
be done easily in any language with structures and type definitions. We will see how after we cover structures. Most features of
object-oriented languages (e.g. overloading, inheritance, templates, etc.) are conveniences rather than necessities for OOP.

1.2.2 Language Performance

When performance is a concern, use a purely compiled language. Interpreted programs are run by another program called an
interpreter. Even the most efficient interpreter spends more than 90% of its time parsing (interpreting) your code and less than
10% performing the useful computations it was designed for. Most spend more than 99% of their time parsing and less than 1%
running. All of this wasted CPU time is incurred every time you run the program.

Note also that when you run an interpreted program, the interpreter is competing for memory with the very program it is running.
Hence, in addition to running an order of magnitude or more slower than a compiled program, an interpreted program will
generally require more memory resources to accommodate both your program and the interpreter at the same time.
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With a compiled program, the compiler does all this parsing ahead of time, before you run the program. You need only compile
your program once, and can then run it as many times as you want. Hence, compiled code tends to run anywhere from tens to
thousands of time faster than interpreted code.

For interactive programs, maximizing performance is generally not a major concern, so little effort goes into optimization. Users
don’t usually care whether a program responds to their request in 1/2 second or 1/100 second.

In High Performance Computing, on the other hand, the primary goal is almost always to minimize run time. Most often, it’s
big gains that matter - reducing run time from months or years to hours or days. Sometimes, however, researchers are willing to
expend a great deal of effort to reduce run times by even a few percent.

There is a middle class of languages, which we will call pseudo-compiled for lack of a better term. The most popular among
them are Java and Microsoft .NET languages. These languages are "compiled" to a byte code that looks more like machine
language than the source code. However, this byte code is not the native machine language of the hardware, so an interpreter
is still required to run it. Interpreting this byte code is far less expensive than interpreting human-readable source code, so such
programs run significantly faster than many other interpreted languages.

In addition to pseudo-compilation, some languages such as Java include a Just-In-Time (JIT) compiler. The JIT compiler converts
the byte code of a program to native machines language while the program executes. This actually makes the interpreted code
even slower the first time it executes each statement, but it will then run at compiled speed for subsequent iterations. Since most
programs contain many loops, the net effect is program execution closer to the speed of compiled languages.

Table 1.1 shows the run time (wall time) of a selection sort program written in various languages and run on a 2.9GHz Intel i5
processor under FreeBSD 13.0. FreeBSD was chosen for this benchmark in part because it provides for simple installation of all
the latest compilers and interpreters, except for MATLAB, which is a commercial product that must be installed manually along
with a Linux compatibility module.

Note FreeBSD’s Linux compatibility is not an emulation layer, and there is no performance penalty for running Linux binaries
on FreeBSD. In fact, Linux binaries sometimes run slightly faster on FreeBSD than on Linux.

This selection sort benchmark serves to provide a rough estimate of the relative speeds of languages when you use explicit loops
and arrays. There are, of course, better ways to sort data. For example, the standard C library contains a qsort() function
which is far more efficient than selection sort. The Unix sort command can sort the list in less than 1 second on the same
machine. Selection sort was chosen here because it contains a typical nested loop representative of many scientific programs.

All compiled programs were built with standard optimizations. Run time was determined using the time command and memory
use was determined by monitoring with top. The code for generating these data is available on Github.

Memory is allocated for programs from a pool of virtual memory, which includes RAM (fast electronic memory) + an area on
the hard disk known as swap, where blocks of data from RAM are sent when RAM is in short supply. The first number shows
the virtual memory allocated, and the second shows the amount of data that resides in RAM. Both numbers are important.

Programs that run 100 times as fast don’t just save time, but also extend battery life on a laptop or handheld device and reduce
your electric bill and pollution. The electric bill for a large HPC cluster is thousands of dollars per month, so improving software
performance by orders of magnitude can have a huge financial impact.

1.2.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How much of the original Unix operating system was written in C?

2. List 5 advantages of C over other high-level languages.

3. Is C too low-level for application programming?

4. Can you do object-oriented programming in C?

https://github.com/outpaddling/Lang-speed
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Language (Compiler) Execution method Time (seconds) Memory
C (clang 11) Compiled 7.8 11 MB (2.7 resident)
C++ (clang++ 11) Compiled 8.1 13 MB (3.9 resident)
C (gcc 10) Compiled 12.3 11 MB (2.7 resident)
C++ (g++ 10) Compiled 12.4 14 MB (4.54 resident)
Fortran (gfortran 10) Compiled 12.4 15 MB (3.65 resident)
Fortran (flang 7) Compiled 12.5 20 MB (7.11 resident)
D (LDC 1.23.0) Compiled 30.5 16 MB (5.2 resident)
Rust 1.57 Compiled 30.6 13 MB (3.5 resident)

Java 11 with JIT Quasi-compiled + JIT
compiler 31.4 3,430 MB (44 resident)

Octave 6.4.0 vectorized
(use min(list(start:list_size)
to find minimum)

Interpreted (no JIT
compiler yet) 34.9 345 MB (103 resident)

GO 1.17 Compiled 37.7 689 MB (14 resident)
Pascal (free pascal 3.2.2) Compiled 43.0 2.2 MB (1.1 resident)
Python 3.8 with numba JIT
0.51 Interpreted + JIT compiler 44.5 305 MB (107 resident)

MATLAB 2018a vectorized
(use min(list(start:list_size)
to find minimum)

Interpreted + JIT compiler 51.7 5,676 MB (251 resident)

R 4.1.2 vectorized (use
which.min(nums[top:last])
to find minimum)

Interpreted 97.4 1,684 MB (1,503 resident)

MATLAB 2018a
Interpreted + JIT compiler
non-vectorized (use explicit
loop to find minimum)

112.2 (1.87 minutes) 5,678 MB (248 resident)

Java 11 without JIT Quasi-compiled 408.8 (6.8 minutes) 3,417 MB (38 resident)
Python 3.8 vectorized (use
min() and list.index() to
find minimum)

Interpreted 758.8 (12.6 minutes) 28 MB (18 resident)

Perl 5.32 vectorized (use
reduce to find minimum) Interpreted 2,040.3 (34.0 minutes) 41 MB (32 resident)

R 4.1.2 non-vectorized (use
explicit loop to find
minimum)

Interpreted 2159.5 (36.0 minutes) 120 MB (70 resident)

Python 3.8 non-vectorized
(use explicit loop to find
minimum)

Interpreted 2362.3 (39.4 minutes) 26 MB (16 resident)

Perl 5.32 non-vectorized
(use explicit loop to find
minimum)

Interpreted 2564.5 (42.7 minutes) 33 MB (23 resident)

Octave 6.4.0 non-vectorized
(use explicit loop to find
minimum)

Interpreted (no JIT
compiler yet)

80096.0 (1334.9 minutes,
22.2 hours) 345 MB (103 resident)

Table 1.1: Selection Sort of 200,000 Integers
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5. How fast is a C program compared to the same program design implemented in an interpreted language such as Python,
Perl, or R?

6. Why is C so much simpler than other high-level languages?

7. Is it enough that a program runs fast enough on your computer? Why or why not?

8. What is the relationship between C and C++?

9. Does C++ enforce object-oriented programming?

1.3 Why use Unix?

1.3.1 Portability

Unix is the only set of open standards to which operating systems conform. It began as an operating system at AT&T Bell
Labs around 1970, but quickly became a model for all operating systems that followed. Today, the term "Unix" refers to every
operating system you are likely to use except Microsoft Windows.

Code written for Unix systems will run on virtually any platform, including Windows with the aid of a compatibility layer such
as Cygwin, or a Virtual machine (VM) running a Unix-compatible system. Code written for Windows will generally only run on
Windows. You can run Windows in a VM on a Unix system, but this does require purchasing a Windows license for each VM.

Unix systems are nearly 100% source compatible with each other. The Unix kernel encapsulates the hardware, so most Unix
programs are not even aware of the type of CPU on which they are running.

POSIX (Portable Operating System Standards based on Unix), is an official standard to which Unix-like systems conform.
Code written to the POSIX standard will generally run without modification on any Unix-like system. Most modern Unix-like
operating systems are more than 99.9% POSIX-compliant.

1.3.2 Stability

Since the Unix kernel encapsulates the hardware, user programs cannot access most hardware directly and therefore cannot cause
a system crash or interfere with the operation of other programs. As a result, Unix systems rarely need to be rebooted. FreeBSD
is particularly robust, and systems have been known to run for years without a reboot. ( This is not a good idea, though, since it
means the kernel is not being updated. )

Since it is so easy to switch from one Unix platform to another, Unix OS developers have to compete with each other for your
business based on objective features such as performance and reliability. This is another reason that Unix systems all tend toward
reliability.

1.3.3 Power, Performance, Scalability

Unix now runs on everything from small embedded devices and cell phones to supercomputers. Android OS is based on Linux,
while macOS and iOS are based on FreeBSD.

In the 1980s, Unix was too big to run on a typical PC, so DOS was created to provide something conceptually similar, but
much smaller. When 32-bit PCs became popular in the 1990s, PC-based Unix became feasible. Today, the roles have reversed.
Windows 10 and 11 require far more memory and disk than most Unix systems.

Note I don’t recall the last time I paid more than $150 for a computer. FreeBSD runs faster on 5 or 10 year old PC than modern
Windows does on brand new hardware, so I just buy used PCs online for all my personal needs.

1.3.4 Inherent Multitasking

Unix was designed as a multiuser, multitasking system from the start, so security and resource sharing are fully integrated. These
features were afterthoughts in MS Windows, which evolved from the single-user, single-process MS DOS.
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1.3.5 Simplicity and Elegance

Unix designers followed the KISS principle: Keep it simple, stupid. Not every Unix feature will seem intuitive at first, but you
will likely find that it is more elegant than what you would have done.

1.3.6 Cost

The majority of Unix systems running today are either BSD or Linux based. Most BSD and Linux systems are FOSS (Free,
Open Source Software), so we can install and use them free of charge.

1.3.7 Unix Today

The BSD family of operating systems have direct lineage from the original AT&T Unix, though most of the code in them today
came from other sources. The most popular pure BSD operating system today is FreeBSD. It is heavily used in networking and
storage applications, including the Netflix content delivery network, Juniper networking products, pfSense and OPNsense fire-
walls, TrueNAS and XigmaNAS storage appliances, and many others. https://en.wikipedia.org/wiki/List_of_products_based_on_FreeBSD
Apple’s macOS and iOS are also derived from FreeBSD.

Linux is a kernel (not an operating system) that was developed mostly independently as a free Unix clone in the 1990s. The name
is derived from the project founder’s name (Linus Torvalds) + Unix. Linux-based operating systems usually combine the Linux
kernel and GNU project user tools (userland), including basic Unix commands, compilers, etc. Some common GNU/Linux
operating systems include Debian, Redhat Enterprise, and Ubuntu. There are dozens more and the landscape is constantly
changing. Linux is also the basis of many products, including Android OS.

Table 1.2 provides a partial list of Unix systems in use today.

Name Type URL
AIX (IBM) Commercial https://en.wikipedia.org/wiki/IBM_AIX
CentOS GNU/Linux Free https://en.wikipedia.org/wiki/CentOS
Debian GNU/Linux Free https://en.wikipedia.org/wiki/Debian
DragonFly BSD Free https://en.wikipedia.org/wiki/DragonFly_BSD
FreeBSD Free https://en.wikipedia.org/wiki/FreeBSD
GhostBSD Free https://en.wikipedia.org/wiki/GhostBSD
HP-UX Commercial https://en.wikipedia.org/wiki/HP-UX
JunOS (Juniper Networks) Commercial https://en.wikipedia.org/wiki/Junos
Linux Mint Free https://en.wikipedia.org/wiki/Linux_Mint
MidnightBSD Free https://en.wikipedia.org/wiki/MirOS_BSD
NetBSD Free https://en.wikipedia.org/wiki/NetBSD
OpenBSD Free https://en.wikipedia.org/wiki/OpenBSD
OpenIndiana Free https://en.wikipedia.org/wiki/OpenIndiana
macOS X and later (Apple
Macintosh) Commercial https://en.wikipedia.org/wiki/OS_X

QNX Commercial https://en.wikipedia.org/wiki/QNX
Redhat Enterprise Linux Commercial https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
Slackware Linux Free https://en.wikipedia.org/wiki/Slackware
SmartOS Free https://en.wikipedia.org/wiki/SmartOS
Solaris Commercial https://en.wikipedia.org/wiki/Solaris_(operating_system)
SUSE Enterprise Linux Commercial https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Desktop
Ubuntu Linux (See also
Kubuntu, Lubuntu, Xubuntu) Free https://en.wikipedia.org/wiki/Ubuntu_(operating_system)

Table 1.2: Partial List of Unix Operating Systems
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1.3.8 Addendum: Maturity

Modern FOSS (Free Open Source Software) Unix platforms have come of age. They now provide everything a typical computer
user needs for personal use and much more, all completely free of charge. Free web browsers such as Firefox are in many ways
more capable than closed source browsers such as Apple’s Safari and Microsoft Edge. LibreOffice can easily replace Microsoft
office for typical users. GNU Image Manipulation Program (GIMP) rivals PhotoShop’s capabilities. Thunderbird email client
can be a drop-in replacement for MS Outlook. There are now thousands of high-quality open source applications for most
common computer uses. Commercial operating systems are now only required by those with esoteric needs that are only served
by commercial applications that most people will never use.

All of these powerful applications can be run on numerous free operating systems that can be installed in about an hour by
someone with relatively modest computer skills.

This was not true in the late 1999 when the first edition of the book was published. In those days, running Unix at home was
only feasible for computer professionals.

Poll: How many students in the class have heard of Firefox? LibreOffice? GIMP? Thunderbird? How many students are running
an open source operating system for personal use?

1.3.9 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Is Unix an operating system?

2. Which mainstream operating systems are Unix compatible?

3. If you write a program on a Linux system with an Intel x86 processor, how hard will it be to port the program to FreeBSD
on an ARM processor?

4. What is POSIX?

5. What types of devices run Unix?

6. How much does a Unix license typically cost?

7. What is the major benefit of using Unix and C together?

8. How does the Unix kernel make it possible for programs written on a PC to run on a RISC workstation or server?

1.4 Addendum: What is Systems Programming?

There is no clear definition of systems programming, but in general the term serves to contrast applications programming. In
applications programming, we write software used directly by the end-user, who may or may not be a computer expert.

Systems programming generally refers to writing software that is not used directly by average users. It may include special tools
used by computer experts, libraries and tools used by application programs but unknown to the application user, or parts of the
operating system.

Learning systems programming generally involves a few major topics:

• Learning C, which is the primary systems programming language for most POSIX (Portable Operating System standards based
on UnIX) systems.

• Learning how C and other languages work under the hood, so that we can write highly efficient and correct systems software.
Efficiency is almost always important, but is paramount in systems programming, since systems code may be utilized by many
or all applications. We also don’t want systems code competing for resources with applications. Systems should leave as much
CPU and memory as possible available to the applications that need them.
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• Learning how to build and deploy systems programs and libraries in a clean and reproducible manner, usually using established
tools for a given operating system. Systems code may be used on millions of installations and therefore must be easy to deploy
and reliable.

• Learning how to interface with operating system services, such as file operations, process creation, interprocess communica-
tion, networking, etc.

• Learning how to document the tools we create using standard documentation tools and formats, so that application developers
have easy access to the information they need.
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Part I

Introduction to Computers and Unix
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Chapter 2

Binary Information Systems

2.1 Why do I need to know this stuff?

Software controls hardware. Understanding the limitations of hardware allows us to write programs that produce correct results
and run as fast as possible.

Computer hardware represents all information in binary, combinations of information packets with only two states.

The limitations of hardware can only be understood by understanding binary information systems.

This topic is covered in more depth in a computer architecture or assembly language course. It is introduced more briefly here so
that we can fully understand the features of the C language.

2.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why is it important for programmers to understand number systems?

2.2 Representing Information in Binary

Any information can be represented in binary, as a combination of elements with two possible states. Conceptually, we use the
digits 0 and 1. Computer hardware uses two different voltages, such as 0V for 0, and 3V for 1.

The decimal number system uses elements with 10 possible states, 0 through 9. The English alphabet uses elements with 26
possible states, A through Z.

2.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is binary?

2. How do we represent binary information on paper?

3. How is binary represented inside a computer?

4. Why do computers use binary rather than decimal?
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2.3 The Usual Jargon

• Bit = Binary digit (a bit of a misnomer, since not all bits are actually part of a number)

• Byte = 8 bits

• Nybble = 4 bits

• Word = maximum number of bits a computer can process at once. Usually 16, 32, or 64.

• Book addendum: Long word was usually 32 bits for both 16 and 32-bit computers, which was pretty much all computers when
the book was published. Usually means 64 bits on 64-bit computers.

• Short word usually means 16 bits, regardless of word size.

2.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Define each of the following:

(a) Bit

(b) Byte

(c) Word

(d) Longword

(e) Shortword

(f) Nybble

2.4 Binary Number Systems

Binary number systems are basically the same as decimal number systems, but use a base of 2 rather than 10. Both binary and
decimal use the "Arabic" system of weighted digits.

There are several ways to define an Arabic numeral system with a limited number of digits:

Fixed point number systems have a fixed number of whole digits and a fixed number of fractional digits. A decimal system with
two whole digits and three fractional digits can represent numbers from 00.000 to 99.999. It is called fixed point because the
position of the decimal (or binary) point is fixed, i.e. it cannot move.

An integer system is simply a fixed point system with no fractional digits. Integer number systems are highly useful in computer
programming due to their efficiency. (Review your notes from 1st grade to refamiliarize yourself with integer arithmetic.)

A floating point system allows the decimal (or binary) point to move. This makes the system far more flexible and increases both
range and precision.

Floating point numbers are represented internally in a form similar to scientific notation, mantissa * radixexponent. As a
result, floating point operations take about 3 times as long as integer operations. For example, floating point addition requires the
same three steps as scientific notation addition:

• Equalize the exponents

• Add the mantissas

• Normalize the result
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2.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the differences between binary numbers and decimal numbers?

2. What do binary and decimal number systems have in common?

3. What is the main difference between the abstract number sets we use in mathematics and the number sets represented in
computers?

4. What is a fixed point number system?

5. What is an integer number system?

6. What is a floating point system?

7. What is a major disadvantage to floating point as compared to integers in computer systems?

8. How are floating point systems implemented in computers?

9. What are the three parts of a floating point number?

10. What steps are necessary to add two floating point numbers?

2.5 Binary Fixed Point and Binary Integers

The Arabic system is a weighted-digit system with each digit multiplied by a power of the base (radix). The digits just left of the
period always has a power of zero. We can use a subscript or a ’_’ to indicate the base, e.g. 56.110 or 56.1_10.

972.81_10 = 9 * 10^2 + 7 * 10^1 + 2 * 10^0 + 8 * 10^-1 + 1 * 10^-2

101.01_2 = 1 * 2^2 + 0 * 2^1 + 1 * 2^0 + 0 * 2^-1 + 1 * 2^-2
= 4 + 0 + 1 + 0 + 1/4
= 5.25_10

Digits in any Arabic system range from 0 to base-1.

Binary numbers are particularly easy to read, since we are always multiplying by either 0 or 1. In fact, it’s a waste of time to
even write "1 *" or the whole expression "0 * 2ˆx":

101.01_2 = 1 * 2^2 + 0 * 2^1 + 1 * 2^0 + 0 * 2^-1 + 1 * 2^-2
= 2^2 + 2^0 + 2^-2
= 4 + 1 + 1/4

Converting from binary to decimal by hand is intuitive, since we use decimal in our heads to do the math.

To convert from decimal to binary, we need to figure out what powers of 2 add up to the number.

37.75_10 = 32 + 4 + 1 + .5 + .25
= 2^5 + 2^2 + 2^0 + 2^-1 + 2^-2
= 100101.11_2

To do this formally, we divide by successive powers of 2, starting with the largest one less than the number. The integer quotient
is our next digit. We continue at least until we have divided by 2ˆ0. If there are fractional digits, we continue until the remainder
is 0, or until we see that the digits will repeat forever.
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100101.11
+-------

32 | 37.75
32

+-----
16 |5.75

0
+----

8 |5.75
0

+----
4 |5.75

4
+----

2 |1.75
0

+----
1 |1.75

1
+----

.5 |0.75
.5

+----
.25 |0.25

.25
----
0

The rightmost digit in any Arabic number has the lowest power of 2 (the lowest weight), so it is called the least significant digit.
Likewise, the leftmost digit is the most significant digit. In binary, a digit is called a bit, so we use the terms least significant bit
(LSB) and most significant bit (MSB).

Bits are often referred to by their position, which is the same as the exponent in an unsigned binary number. E.g., the rightmost
bit is bit 0, the next one bit 1, etc.

Computer fixed point systems are generally integer systems with 8, 16, 32, or 64 bits.

The largest integer in any system is the one filled with the largest digit. E.g., the largest 5-digit decimal integer is 99999, and the
largest 8-bit integer is 11111111.

An interesting property of maximum integers is that they are always equal to base#digits - 1. If we add 1 to them, the sum digits
are all 0 and the carry propagates to the far left.

Decimal Binary

Carry 11111 11111111

99999 11111111
+ 1 + 1
--------- ------------

100000 = 10^5 100000000 = 2^8

Hence, the largest N-digit decimal value is always 10N - 1, and the largest N-digit binary value is always 2N - 1. Table 2.1 shows
the range of the common unsigned integer types.

Book addendum: PCs now mostly use 64-bit processors, extended versions of the 32-bit processors in use when the book was
published.

2.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.
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Bits Range Decimal Range
8 0 to 2ˆ8 - 1 0 to 255
16 0 to 2ˆ16 - 1 0 to 65,535
32 0 to 2ˆ32 - 1 0 to 4,294,967,295
64 0 to 2ˆ64 - 1 0 to 18,446,744,073,709,551,615

Table 2.1: Range of Common Unsigned Binary Integer Systems

1. What is the decimal value of 1101.1_2?

2. What is the binary value of 49.125_10?

3. What are LSB and MSB?

4. What is the LSB in 100010?

5. What is the MSB in 010111?

6. What is the range of a 7-digit unsigned decimal number system?

7. What is the range of a 10-bit unsigned binary number system? Show your answer in binary, in powers of 2, and in decimal.

8. How many kinds of people are there in the world?

2.6 Binary Arithmetic

Binary arithmetic is easier than decimal (or other bases, which we will discuss later), because we are only working with 0s and
1s. Just remember that the largest possible digit is 1, so 210 is 102 and 310 is 112.

Note There are 10 kinds of people in the world: those who understand binary, and those who don’t.

The process of adding, subtracting, multiply, or dividing binary is exactly the same as in decimal. We need only remember to
express the results in binary, e.g. 10 instead of 2.

Carry 1 1

1001
+ 1101
---------

1 0110

The carry out of the MSB indicates an overflow if we are using a 4-bit unsigned binary integer system. The mathematical sum
requires 5 bits, but our integer system only has 4.

In most CPUs, the carry bit is saved in a special register (storage cell) in the CPU so that we can check for overflow if necessary.

A 32-bit computer can add 64-bit numbers, but it will require two steps. First, add the lower 32 bits. Then add the upper 32 bits
+ the carry from the lower 32. This is called multiple precision arithmetic. Obviously, it takes twice as long as single precision
arithmetic, where the computer can perform the operation in one step.

# Multiple precision illustration adding 8-bit values 4 bits at a time
# The lower (rightmost) 4 bits are added first. This is one ADD instruction
# for the computer. The upper 4 bits are then added using a different
# instruction, ADDC (add with carry), which adds two values, plus the carry
# from the previous instruction.

ADDC ADD
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1 Carry from previous ADD instruction
0010 1001

+ 1001 1011
-------------

1100 0100

Hence, using 64-bit integers on a 32-bit CPU, or 128-bit integers on a 64-bit CPU will slow down the program.

2.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. (a) What is 1100_2 + 0111_2 in 4-bit binary?

(b) What is the decimal value of the 4-bit sum?

(c) Is there an overflow? Explain in terms of the resulting bits and in terms of the resulting value.

2. Explain multiple precision addition.

3. What is the down side of multiple precision arithmetic?

4. Represent +8 and -3 in 8-bit twos complement.

5. What are the decimal values of the 8-bit twos complement numbers 11111111 and 00001111?

6. How many different unsigned integers can we represent with N bits?

7. How many different signed integers can we represent with N bits?

8. How many different floating point values can we represent with N bits?

2.7 Signed Integers

Computer hardware represents all information as patterns of two voltages, which we call ’0’ and ’1’ for convenience. It does not
have another state to represent ’-’. We must somehow distinguish positive and negative numbers using just 0s and 1s.

There are many systems for representing negative numbers, which are covered in courses on computer architecture or assembly
language. Here we only introduce the most commonly used system, called two’s complement.

A positive value in two’s complement always has a 0 in the leftmost bit and looks exactly the same as an unsigned integer with
the same value.

# Unsigned
00001001_2 = 2^3 + 2^0 = 9

# Two’s complement
00001001_twos = +(2^3 + 2^0) = +9

A negative number has a 1 in the leftmost bit. However, the leftmost bit is not an independent "sign bit" as is often suggested.
The fact that negative numbers have a 1 there is a consequence of the negation process that affects all bits.

To negate any two’s complement value, whether positive or negative, we invert all the bits and then add 1. The inverted form of
a binary value X is referred to as X’, so in two’s complement, -(X) = X’ + 1.

-(00001001_twos) = 00001001’ + 1 = 11110110 + 1 = 11110111_twos

Intuitively, we would think that reversing the process involves subtracting 1 and then inverting all the bits. This will work, but it
is not necessary to have this separate process. The same process X’ + 1 works in both directions.
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-(11110111_twos) = (11110111 - 1)’ = 11110110’ = 00001001_twos
-(11110111_twos) = 11110111’ + 1 = 00001000 + 1 = 00001001_twos

This is important in hardware design, since it means we only need one circuit, not two, to perform negation.

What are the decimal values of 01001111_twos and 11001000_twos?

01001111 is positive, so
+(2^6 + 2^3 + 2^2 + 2^1 + 2^0)

= +(64 + 8 + 4 + 2 + 1)
= +143

11001000 is negative, so
11001000

= -(00110111 + 1)
= -00111000
= -(2^5 + 2^4 + 2^3)
= -(32 + 16 + 8)
= -56

Represent +7 and -12 in 8-bit two’s complement.

+7 = 4 + 2 + 1 = 2^2 + 2^1 + 2^0 = 00000111_twos
-12 = -(8 + 4) = -(2^3 + 2^2) = -(00001100) = 11110011 + 1 = 11110100_twos

With N bits, there are exactly 2N different values that can be represented, regardless of how the bits are interpreted.

With two’s complement, half the patterns are used to represent negative values, and half are non-negative (positive or zero).

Binary 0000 0111 1000 1111
Unsigned 0 7 8 15
Two’s comp 0 7 -8 -1

Hence, the positive range is half of what it would be for an unsigned integer system with the same number of bits.

Generally, the non-negative values in two’s complement range from 000..0 to 011..1 (0 to 2N-1 - 1) and the negative values range
from 100..0 (-2N-1) to 111..1 (-1). Table 2.2 shows the ranges of common computer signed integer sizes.

Bits Range Decimal Range
8 -2ˆ7 to +2ˆ7 - 1 -128 to +127
16 -2ˆ15 to +2ˆ15 - 1 -32768 to +32767
32 -2ˆ31 to +2ˆ31 - 1 -2,147,483,648 to +2,147,483,647

64 -2ˆ63 to +2ˆ63 - 1 -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

Table 2.2: Range of Common Unsigned Binary Integer Systems

Note It is important to know these ranges when selecting an integer data type in any language. We must choose a type that
has sufficient range for our data, including the highest intermediate value computed while evaluating an expression, not just the
end result.

One of the beauties of two’s complement is that addition works exactly as it does in unsigned binary. We can ignore the sign of
both numbers and just add them as if they were unsigned integers. Overflow detection is different, however. We detect overflow
in two’s complement addition by noting that the sign of the result is wrong. I.e., when adding two positives we get a negative, or
vice versa. It is not possible to get an overflow when adding a positive and a negative.
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Carry 1000 1 1100

0111 7, +7 1011 11, -5
+ 0100 4, +4 + 1110 14, -2
-------- --------

1011 11, -5 1 1001 9, -7

No OV for unsigned OV for unsigned
OV for two’s comp No OV for two’s comp

2.7.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the range of a 12-bit twos complement system? Show your answer in binary, as powers of 2, and as decimal values.

2. Which of the common integer sizes are sufficient to represent Avogadro’s constant?

3. What’s the difference between unsigned addition and twos complement addition?

4. Add the following 8-bit twos comp values 01001000 and 01010011. Show results in twos comp and in decimal. Indicate
whether an overflow occurs. Explain in terms of the bits computed and the value of the result.

2.8 Floating Point

Floating point allows us to represent fractional values as well as much larger integers than an integer system with the same
number of bits.

Floating point stores values in a format similar to scientific notation, mantissa * radixexponent. Modern systems use the
IEEE floating point standards. The 32-bit standard uses a sign bit, an 8-bit exponent, a 24-bit mantissa of the form 1.F, and a
radix of 2. Only the fractional part of the mantissa is stored, since the whole digit is always 1. The 64-bit standard uses an 11-bit
exponent and a 53-bit mantissa. Since the leftmost bit of the mantissa is always 1, it need not be stored, and only the fractional
bits are part of the format:

32-bit S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF
64-bit S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

Value = +/- 1.F * 2E.

A floating point system offers less precision than an integer system with the same number of bits, because some of the bits are
used for the exponent. Only the mantissa contains significant digits. The 32-bit format has 6 to 7 decimal digits of precision while
the 64-bit format has 15 to 16. A 32-bit integer handles up to 10 decimal digits and a 64-bit integer up to 20. ( See Table 2.1. )

The exponent essentially spreads out the values we can represent. We can represent larger integers, but the gap between num-
bers we can represent grows as the exponent grows. E.g., if incrementing the mantissa from 1.00000000000000000000000 to
1.00000000000000000000001 increases the mantissa by 2-23. However, if the exponent in the floating point value is 30, this
change increases the value of the floating point number by 2-23 * 230 = 2ˆ7, or 128. There are 127 integer values between that
cannot be represented.

2.8.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.
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1. Does floating point allow us to represent more different values than integer systems with the same number of bits? Explain.

2. What are two advantages of floating point over integers?

3. What are two disadvantages of floating point vs integers?

2.9 Floating Point Range and Precision

There are 5 properties of floating point values we must understand in order to use them properly:

• Largest positive value

• Smallest positive value

• Largest negative value (what does "largest" mean for a negative number?)

• Smallest negative value (what does "smallest" mean for a negative number?)

• Precision (maximum significant digits that can be stored)

Note Accuracy and precision are two different things. Accuracy indicates how close a value is to reality. It is a property of a
particular value. Precision indicates how many digits we can represent. It is a property of the number system or the device.
A scale that consistently reports weight to 3 decimal places, but is not calibrated (so it reads 0.000 when nothing is on it) is
precise, but not accurate.

Book addendum: The book doesn’t always distinguish between accuracy and precision.

When a result exceeds the largest positive or smallest negative value we can represent, we have an overflow. I.e. the magnitude
is too large.

When a result is between the largest negative and smallest positive values we can represent, we have an underflow. I.e. the
magnitude is too small.

When the true result requires more significant digits than our system can store, we have round off or truncation error. Truncation
always results in a smaller value than the true result. Round off results in the nearest value that can be represented.

Bits Largest magnitude Smallest magnitude Precision
32 ~ +/- 1038 ~ +/- 10-38 23 bits (~7 decimal digits)
64 ~ +/- 10308 ~ +/- 10-308 52 bits (~16 decimal digits)

Table 2.3: IEEE Floating Point Range and Precision

2.9.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the properties of floating point that programmers need to understand?

2. Which has a greater magnitude, the smallest negative value or the largest negative value?

3. What is precision and of what is it a property?

4. What is accuracy and of what is it a property?
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5. Define overflow.

6. Define underflow.

7. Define round-off error.

8. Define truncation error.

9. Which of the common floating point sizes can represent Avogadro’s constant?

2.10 Other Number Systems (Bases)

Binary has the advantage of being the simplest number base for implementing in hardware.

The down side is, the lower the base, the more digits a value has.

65,53510 = 11111111111111112.

Converting between binary and decimal is laborious due to the large number of bits, and does not always work perfectly. For
example, the decimal number 1/10 cannot be represented in binary fixed point or floating point. It is like trying to represent 1/3
in decimal. It requires an infinite number of digits.

The solution to these problems stems from an interesting property of number bases. If B = AN, then a digit in a base B number is
exactly N digits in the base A number. E.g., a base 8 (octal) number is exactly 3 bits, since 8 = 23, and a base 16 (hexadecimal)
digit is exactly 4 bits, since 16 = 24.

Octal digits are 0 to 7. Hexadecimal (hex) digits are 0 to 15, with 10 through 15 represented by A through F.

When converting between binary (base 2) and any base 2N, we can convert one digit at a time, rather than multiply and add or
divide and subtract as we would when converting to/from decimal. Table 2.4 and Table 2.5 are provided for convenience.

Binary Octal
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Table 2.4: Binary/Octal Conversion

F093651C.4_16 = 1111 0000 1001 0011 0110 0101 0001 1100 . 0100

74672343.5_8 = 111 100 110 111 010 011 100 011 . 101

When converting from binary, be careful to group the bits starting at the binary point and work outward. Pad any groups of fewer
than 3 bits appropriately. 10 = 010 != 100. .01 = .010 != .001.

10001010101.1001_2

= 10 001 010 101.100 1
= 010 001 010 101.100 100
= 2125.44_8

= 100 0101 0101.1001
= 0100 0101 0101.1001
= 455.9_16
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Binary Hex
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Table 2.5: Binary/Hex Conversion

When converting between binary, octal, and hexadecimal, we completely disregard the binary format of the number. We don’t
care whether it is an unsigned integer, two’s complement, floating point, or any other system. Octal and hexadecimal are used to
represent raw binary, not specific information formats.

1001010011010011_2 = 94D3_16
1001010011010011_twos = 94D3_16

2.10.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Convert F841.5_16 to binary.

2. Convert 10010010100111.001_2 to hexadecimal.

3. Convert 673.1_8 to binary.

4. Convert 1011001011010011.01_2 to octal.

5. Convert 789.52_8 to binary.

2.11 Character Representation

The original standard character set is ASCII, which uses 7-bit codes to represent 128 characters including English letters, digits,
etc.

ISO, the International Standards Organization, extended the ASCII set to create multiple 8-bit ISO standards including characters
from non-English languages and additional graphic characters. E.g. the ISO-Latin1 standard covers western European languages.
16-bit extensions also exist to include non-phonetic languages, such as Chinese, which have far more than 256 characters, the
limit for 8 bits.

Character codes are not numbers, though we often write them in decimal for convenience. E.g. the code for ’A’ is 01000001,
which can be treated as a number and written as 6510. The code for ’a’ is 01100001. Note that ’a’ differs from ’A’ by 1 bit (bit
5). We can convert between upper and lower case by toggling this bit.
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2.11.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the limitations of ASCII?

2. What is ISO?

3. How are ISO character sets related to ASCII?

4. What is EBCDIC?

5. Are ASCII and ISO codes numbers?
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Chapter 3

Hardware and Software

3.1 What Makes Computers Tick?

A computer is like a pasta machine that turns programs into actions.

A computer scientist is a machine that turns pizza into programs.

3.2 The Main Components

3.2.1 The CPU

CPU = Central Processing Unit.

The CPU is controlled by machine instructions, and converts those instructions to electronic signals that drive memory, disk, and
other devices.

Addendum: CPU has become a vague term that could mean a physical chip, or a logical unit of operation, for which the preferred
term is now core. As of 2023, one CPU chip usually has 4 or more cores.

Different CPU architectures use different machine instructions. The x86 family of architectures (mostly Intel and AMD proces-
sors, including AMD Epyc, AMD Ryzen, Intel Core series, Intel Xeon), use completely different machine instructions than a
Sun Sparc, an ARM, or a RISC-V processor. Most PCs use x86 processors, while most cell phones and tablets use ARM. The
latest Apple Macintosh computers also use ARM.

RISC-V (RISC Five) is the world’s first mainstream open source architecture. Unlike other CPU architectures, there is no patent,
no licensing fees, and no NDA (non-disclosure agreement) for producers of RISC-V processors. RISC-V is rapidly taking market
share from less open architectures.

3.2.2 Electronic Memory: RAM and ROM

RAM = Random Access Memory. It is volatile storage, meaning it’s contents disappear when power is lost. (From chemistry,
meaning something that evaporates quickly.)

ROM = Read-Only Memory. ROM works exactly like RAM, except that it cannot be overwritten and is non-volatile. A portion
of the memory space in all computers must be ROM, so that there is a something for the CPU to run when the power is first
turned on. The program code in this ROM is called firmware rather than software.

Both are randomly accessible, i.e. we can access any location directly. As a counterexample, a tape drive is not randomly
accessible. We must read all locations sequentially before the one we want in order to find it.

The difference between RAM and ROM is that RAM can be both written and read. RAM would be better named RWM. Modern
ROMs such as flash memory can be rewritten, but not as easily as RAM and only a small number of times (typically 100,000,
then it’s burned out).
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3.2.3 Input/Output Devices

I/O devices include anything used to communicate with people, such as keyboards, mice, displays, and printers.

3.2.4 Mass Storage Devices

Mass storage is non-volatile storage that is cheaper and slower than electronic memory. It includes magnetic disks, tapes, and
flash memory devices such as SSDs (Solid State Drives) and USB thumb drives.

Mass storage is typically tens of thousands to millions of times slower than RAM and ROM.

Machine instructions and data that need to be accessed multiple times are usually loaded into RAM rather than read from mass
storage repeatedly.

Note If data need only be read once, it is foolish to load large amounts of it into RAM (such as an array or list). Doing so only
increases resource requirements of the program and slows it down. More about this in Chapter 15.

3.2.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a CPU? What is a core? What is the relationship between them?

2. What are volatile and non-volatile storage?

3. What is ROM? Is it volatile or non-volatile? What is it used for?

4. What is RAM? What might be a better name for it and why?

5. What are I/O devices for?

6. What is mass storage for? What are three common types of mass storage?

3.3 Programs and Programming Languages

3.3.1 Machine Language

It is often said that machine language is the only language that a CPU "understands". This is misleading. It is more accurate to
say that machine instructions cause a CPU to generate electronic signals.

A machine language instruction is a package of bits indicating what operation to perform and the operands on which to perform
it. The opcode indicates the operation. The operands are either registers (memory locations within the CPU, of which there are
very few) or memory locations in RAM. Table 3.1 represents a hypothetical instruction that adds the contents of registers 1 and
5, placing the result in register 1.

Opcode Destination Source #1 Source #2
1100 0001 0101 0001

Table 3.1: A Hypothetical Machine Instruction

The bits of a machine instruction act like the pins on the drum of a music box. These pins are a binary "program" that is fed
through the machine, flipping metal strips of different lengths, causing them to emit notes, as shown in Figure 3.1.
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Figure 3.1: Music box (wonderhowto.com)

3.3.2 Assembly Language

Machine language is hard for humans to read, so we use assembly language, which is basically a mnemonic (symbolic) form
of machine language plus a few added conveniences. The assembly language form of the machine instruction above might be
written as:

add r1, r5, r1

Assembly language must be assembled to machine language by a program called an assembler. An assembler is an almost
trivial program that reads one line of assembly source code as text and usually converts it to one corresponding binary machine
instruction. Some assembly instructions may translate to a few machine instructions to provide some added convenience, but
generally the assembly and machine instructions sets are about the same.

Assembly language is easier to read than machine language, but like machine language, it is specific to one CPU architecture,
i.e. it is not portable. An assembly language program for x86 will have to be rewritten to run on ARM.

Assembly language programs are also very long, since machine/assembly instructions are very simple. Evaluating a polynomial
may require a sequence of dozens of simple add and multiply instructions.

3.3.3 High Level Languages

High level languages are portable (not specific to one CPU architecture) and are much shorter and more intuitive than assembly
language, thanks to constructs such as algebraic expressions, if statements, loops, and subprograms. Evaluating a polynomial
can be done in one intuitive line:

y = 3.4 * x * x - 5.1 * x + 0.2;

A compiler converts high-level language source code to a sequence of machine instructions, called machine code or object code.

A compiler is a highly complex program that must analyze groups of statements forming constructs such as conditionals, loops,
and subprograms before it can output the equivalent sequence of machine instructions.

Note The Java "compiler" is not a true compiler. It converts Java source code to Java byte code, not machine code. The Java
byte code does not control any CPU architecture directly. It must be interpreted by a program called an interpreter, which is
part of the Java Runtime Environment (JRE).

The true compiled languages most commonly used today include C, C++, and Fortran. These three account for the vast majority
of compiled open source programs.
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3.3.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is machine language?

2. What is assembly language?

3. What are two major drawbacks to programming in assembly language?

4. What does an assembler do? How complex is it and why?

5. What is a high-level language?

6. What does a compiler do? How complex is it and why?

7. What does an interpreter do? How does it differ from a compiler.

8. Which will run faster, and by how much, a compiled program or an equivalent interpreted program?

3.4 The Programming Process

3.4.1 Algorithms

Algorithms are hypothetical recipes for solving problems. A program is not an algorithm. A program is an implementation of an
algorithm, much like a car is an implementation of a CAD model.

Selection sort is an algorithm, where we find the smallest (or largest) element in a list, swap it with the first, and repeat for
the remaining elements. Quicksort is a similar algorithm that is much more efficient in most cases. These algorithms can be
implemented in any language and using different features of a language, such as arrays, lists, and recursion.

3.4.2 Top-down Designs and Stepwise Refinement

Stepwise refinement is the process of starting with a high level view of an algorithm, with no detail, and breaking it down into a
few components. The process is repeated for each component until it is trivial to implement each component.

A top-down design represents all levels of the stepwise refinement process. It is a tree structure with the high-level statement
as the trunk. Figure 3.2 shows a top-down design for a selection sort. Each node in this tree can be easily implemented as a
subprogram in any language. The "Selection sort" node is the main program.

Figure 3.2: Top-down Design for Selection Sort

Diagrams like Figure 3.2 become very wide very quickly if we have more than a few levels of refinement. On paper, different
levels of refinement can be represented with increasing levels of indentation. This format fits a typical document much better
than a tree diagram.
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Highest level
First refinement

Second refinement

Sort a file
Read file into list
Sort list

Find smallest element
Swap smallest with first
Repeat for remaining elements

Output sorted list

Top-down implementation is the process of writing the main program first, and gradually adding subprograms at increasing
levels, while testing the partially complete program frequently along the way. This will be covered in more detail in Chapter 11.

3.4.3 Flow Charts

A flow chart typically represents one level of a top-down design graphically, to aid understanding.

No

BEGIN

Compute

Discriminant (d)

Compute

Solution #1

Compute

Solution #2

Print solutions

Print

Error Message

END

Input

Coefficients

d < 0 ?
Yes

Figure 3.3: Flow Chart
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3.4.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the relationship between algorithms and programs? Describe an example of each.

2. Describe stepwise refinement.

3. What is a top-down design?

4. What is a flowchart?

3.5 Engineering Product Life Cycle

This section introduces the engineering product life cycle, which is used to assure a rational development process and quality
results in all fields of engineering, including software engineering. In software engineering, we refer to it as the software life
cycle. Although the software life cycle may not be the primary focus of this course, it should be practiced in all programming
endeavors, including college courses, personal projects, and professional development.

It is, unfortunately, not usually stressed in early computer programming classes. If it were, students would avoid developing bad
habits and struggle far less as they develop increasingly complex programs. We present it here before getting into C and Fortran
to help you avoid these issues.

The product life cycle has been extensively studied and refined over time, and is the topic of entire semester courses in most
engineering disciplines. Our coverage here is a very high level overview, using a 4-step process which is outlined in the following
sections.

3.5.1 Specification

Specification is understanding the essence of the problem to be solved as clearly as possible. Specifications may evolve during
design and implementation stages as new insights are gained from working on the solution. However, every effort should be
made to write specifications that will require minimal change during later stages of development.

A clear specification makes the steps that follow an order of magnitude easier and more enjoyable.

3.5.2 Design

The design phase involves examining possible solutions to the problem with a completely open mind. The decision to write
software or develop a non-software solution does not occur until after the design phase. Instead, the design phase focuses on the
abstract process of solving the problem.

A design contains only algorithms, mathematical formulas, diagrams, etc. It does not mention any specific programming lan-
guages or other tools used to implement (build) the solution. One should avoid any thoughts about how the solution will be
implemented during the design phase. Such thoughts lead to bias that will reduce the quality of the design.

A well-developed design makes implementation and testing an order of magnitude easier and more enjoyable.

3.5.3 Implementation and Testing

Implementation involves building something to test the process developed in the design stage. If you developed a good design,
the implementation stage will be relatively uneventful and enjoyable. If you find yourself struggling during implementation, then
you either need to develop a better programming process or go back and correct deficiencies in the design.

If the best solution found during the design stage is to use existing hardware or software, there is little to do in this stage. If it
involves developing new hardware or software, then implementation involves the following:
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1. Selecting the right tools and materials. For software, this means computer hardware, operating system, and programming
language. For a hardware design, it means electronic or mechanical devices and fabrication techniques. A good choice here
requires a solid understanding of the design, and knowledge of many available tools. Far too often, software developers
choose an operating system or language because it’s the only one they know, leading to a poor quality product that does
not serve the customers’ needs well.

2. Performing the implementation. For software, this means writing the code. For hardware, it could mean building prototypes
of the hardware.

Testing is the heart of good engineering. Solid scientific theories and technology can help us design and build products faster and
cheaper, but testing is the only way to ensure quality.

Testing is not a separate stage in the development time line, but occurs continuously starting at the beginning of the implementa-
tion stage, and continues indefinitely, long after implementation and product release.

Testing should occur incrementally, following every small change throughout the implementation process. Generally, you should
add no more than about 10 lines of code before testing again. Add a caveman debug statement along with the new code to show
that it is working correctly. Remove it or comment it out after the code is verified. If you find yourself struggling during the
implementation and testing stage, it is probably because you are violating this principle.

#!/bin/sh -e

# Trim one file at a time
for file in *.fastq; do

# Caveman debug statement to show that the loop is processing the
# correct files. Remove or comment out after verifying.
# Then uncomment the actual trim command below and test that.
printf "$file\n"

# Trim reads
# fastq-trim --3p-adapter1 AGATCGGAAGAG \
# --polya-min-length 3 $file $trimmed

done

Additional types of testing occur following completion of the product, such as alpha testing, which refers to formal in-house
testing of the complete product before releasing it to customers, and beta testing, which refers to testing performed by a limited
group of real customers before officially releasing the product for general use.

Incremental testing should catch 99% of the bugs in a program. Alpha testing should catch almost all of the few remaining bugs
before the program is released for beta testing. Beta testers should not find any additional bugs.

Beta testing should be a formality just to make absolutely certain that the product is ready for release. Beta testers may also
reveal room for improvement in the user interface. Developers are not usually in tune with typical users, so this kind of feedback
is important.

Note
Every script or program should be tested on more than one platform (e.g. BSD, Cygwin, Linux, Mac OS X, etc.) immediately, in
order to shake out bugs before they cause problems.
The fact that a program works fine on one operating system and CPU does not mean that it’s free of bugs.
By testing it on other operating systems, other hardware types, and with other compilers or interpreters, you will usually expose
bugs that will seem obvious in hindsight.
As a result, the software will be more likely to work properly when time is critical, such as when there is an imminent deadline
approaching and no time to start over from the beginning after fixing bugs. Encountering software bugs at times like these is
very stressful and usually easily avoided by testing the code on multiple platforms in advance.

3.5.4 Production

After the product is fully tested, it is ready to release to the general public. Unfortunately, many products are released without
being properly tested. Some individuals and organizations simply lack the discipline to implement proper test procedures. Some
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have adopted the odd notion that they should adhere to a rigid release schedule in order to appease rigid customers who do not
understand product development. This simply does not work. We cannot predict how long it will take to identify and fix all the
major bugs in a product.

3.5.5 Support and Maintenance

No product is ever really finished. There will always be more flaws to be discovered and improvements to be made. This is
especially true with software, which will likely need updates just to keep it working with newer dependent libraries and operating
systems on which it runs. Writing software is exactly like adopting a puppy. It’s fun and exciting at the beginning, but a lot of
work. The software will grow over time, and become easier to manage. Most of all, it’s a commitment of a decade or more.

Implementing code in a stable language (one that isn’t changing rapidly) will reduce maintenance costs. C, Fortran, POSIX
Bourne shell, and awk are examples of highly stable languages that are still heavily used and have not changed significantly in
many years. Hence, even long-abandoned C, Fortran, Bourne shell, and awk code still works today and will continue to work for
years to come.

In contrast, there is a great deal of code written to Python 2 standards that would still be useful today, if not for the fact that it
does not run under a Python 3 interpreter and Python 2 is no longer maintained or secure. Python 2 was originally scheduled
to be sunsetted in 2015, but not surprisingly, there were many Python 2 scripts that people still needed, but no one was willing
or able to upgrade to Python 3. As a result, the Python project continued to maintain Python 2, at great expense, until 2020.
(https://www.python.org/doc/sunset-python-2/) There are still today numerous useful Python 2 scripts that will not run under
Python 3, and people running Python 2 interpreters with known bugs and security holes that will never be fixed.

A new C++ standard is published every few years, adding new features and deprecating old ones, so old C++ code often fails to
build under new compilers. This can usually be solved by forcing the new compiler to use an older standard. Compiling new
code with older compilers is often simply impossible. Users of Redhat Enterprise Linux, which is based on heavily patched older
tools for stability and long-term compatibility, often need to install a second compiler in order to build newer programs.

If you decide to implement code in a rapidly evolving language, you must be prepared to make significant updates every few
years in order to maintain its usefulness. If you abandon such code, it will quickly become a fossil.

3.5.6 Hardware Only: Disposal

Hardware engineers must also think about what will happen to the product when it reaches its end of life. Should it simply be
thrown away? Does it contain valuable materials that should be recycled? Does it contain toxic materials that should not go in
a landfill? All of these questions tie into the design and implementation stages. Implementing a product in a way that makes
disposal easy is a wise move that will prevent many problems for the customer and the company.

3.5.7 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Briefly describe the six stages of the engineering product life cycle.

2. Describe the three major types of testing and when they occur.

3. What is the most likely reason if someone is having a hard time figuring out what code to write for a new section of a
program?

4. What is the most likely reason someone is having a hard time locating a bug in some code they just wrote?

https://www.python.org/doc/sunset-python-2/
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Chapter 4

Unix Overview: Enough to Make You Dangerous

Note We cover this in roughly three 50-minute lectures, though for some courses it may be reasonable to teach Unix in more
depth.

A "little" knowledge is a dangerous thing. Unfortunately, it is all we have time for in this course. Do not be content with the
Unix we teach you here. If you master everything covered here, you will still be a Unix beginner. You will be much better
off after you learn Unix properly. A free, comprehensive introduction is available in the Research Computing User’s Guide:
https://acadix.biz/publications.php

The purpose of this Unix overview is to learn enough to create directories for programming projects, cd around your directories,
edit C source files and makefiles, and run a few other basic commands as part of the coding and testing process. However, there
is more material covered here than is necessary for basic C coding. Some non-essential topics such as redirection and pipes
are covered to give the reader better idea of how powerful Unix really is, so that they will understand the potential benefits of
learning more about it.

Note Instructors: Take care not to get bogged down in this chapter. It’s easy to get caught up in discussing Unix since there
are so many great features to talk about, but remember that this course is about C programming, and the students only need
to know enough Unix to write code. A separate course on Unix would be a great idea for many of the students.

4.1 What is an Operating System?

An operating system (OS) is not a "program". It is a collection of programs and subprograms that enable users to process files,
communicate, write new programs, etc. An operating system contains several major parts:

• The kernel is the core of the operating system that controls the hardware. It is essentially a library (covered in Chapter 20)
of functions called by programs that need to access hardware other than memory and the CPU, to work with files, network
connections, the display, etc.

Calls to kernel subprograms are called system calls.

Device drivers are the parts of the kernel that actually manipulates the hardware. Writing device drivers requires understanding
of the specific hardware device and how to communicate with it. Device drivers can be and often are written entirely in C.
Assembly language is sometimes used as well.

• The bootstrap program is responsible for starting the operating system. The computer’s BIOS (Basic Input/Output System) or
other firmware, stored in ROM, checks the first block on the boot disk (the boot block) for a special structure. If found, it uses
the information in the boot block to locate and load the first stage of the boot program provided by the operating system into
RAM and begin running it. This begins the process of loading other OS components into memory, such as the kernel.

https://acadix.biz/publications.php
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• A user interface allows people to communicate with the operating system. It may be a command-line interface (CLI) or a
menu-driven interface, such as a graphical user interface (GUI). MS Windows and Apple Macintosh computers have one
standard GUI. Most Unix systems allow the user to choose from many different GUIs.

• Utility programs, often called userland tools, allow users to perform common tasks, such as manipulate files, communicate
with other computers or people, etc. Typical Unix systems come with hundreds of utility programs preinstalled and make it
easy to install thousands more.

In a protected mode OS, the kernel has complete control of the hardware. Processes (running programs) cannot access memory
allocated to other processes. Users cannot interfere with the operation of each others’ programs.

A real mode operating system allows direct access to all memory. A faulty or malicious program can even overwrite the kernel.
DOS (disk operating system, the predecessor of MS Windows) is a real mode operating system. Real mode systems are typically
only used in embedded applications today. All modern PC and server operating systems use protected mode.

4.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the major components of an operating system?

2. What is a protected mode operating system and where is it essential?

4.2 Unix Operating Systems (Was "The Unix Operating System")

Most people make most things far more complicated than they need to be. For many, it’s essentially a deliberate, though not
entirely conscious choice. People are emotionally driven by ego to show off how clever they are. This is especially true of
engineers:

Aside
To the engineer, all matter in the universe can be placed into one of two categories:

1. Things that need to be fixed

2. Things that will need to be fixed after I’ve had a few minutes to play with them

Engineers like to solve problems. If there are no problems available, they will create their own problems. Normal people don’t
understand this concept; they believe that if it ain’t broke, don’t fix it. Engineers believe that if it ain’t broke, it doesn’t have
enough features yet.
No engineer can look at a television remote control without wondering what it would take to turn it into a stun gun. No engineer
can take a shower without wondering whether some sort of Teflon coating would make showering unnecessary. To the engineer,
the world is a toy box full of sub-optimized and feature-poor toys.
-- The Engineer Identification Test (Anonymous)

The wisest among us are self-aware enough to consciously override the impulse to look clever, for the sake of a more reliable
and less costly product.

cleverness * wisdom = constant

Always try to follow the KISS principle: Keep it Simple, Stupid.

The original C and Unix developers were very wise. They designed an extremely simple and elegant new language in C, and then
used it to build the simplest and most elegant operating system to date. Both C and Unix have been the model for most languages
and operating systems that have followed.
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It has often been said that people who use Unix have no need to write programs. This is true in many cases. Unix systems
come with many utility programs that can be combined to accomplish most common tasks. Some of these will be covered in the
coming sections.

Caution
Using a strong password and protecting it from exposure is especially important on a system where you can remotely
log in and run programs. If someone cracks your email password, they can potentially log into the system and do nasty
things in your name. On a remotely accessible Unix system, a hacker from another part of the world could log in as
you, delete or alter your files, or use your account to launch other kinds of attacks.
A VPN is no protection against this if your VPN credentials are the same as your Unix login credentials, which is
often the case. In fact, a VPN can reduce security by making it impossible to limit incoming connections to certain IP
addresses.
Keep important passwords separated from less important ones, and take extra security precautions on the important
ones.
Use a password vault such as KeePassXC (https://keepassxc.org/) to store your passwords and use an extremely
secure password for KeePassXC itself.

Different terminal types use different magic sequences to control the screen and send different sequences when keys are pressed.
For example, sending the character sequence "\033[H\033[2J" (\033 is character 33 octal, 27 decimal) to an xterm terminal causes
it to clear the screen.

If your TERM environment variable is set incorrectly, strange things will happen while running programs that need to move the
cursor around, set bold face fonts, change colors, etc. This is rare, but if your terminal is behaving strangely, it is something to
look into.

Addendum: The qterm command for querying the terminal type is not available on all Unix systems and generally not needed
anymore. Your terminal type will be correctly detected in most cases.

The Unix command-line interface (CLI) is provided by a program called a shell. The term comes from the analogy of an operating
system as a nut, with the kernel being the inner layer encapsulating the hardware, and the user interface being the outer layer, or
shell. Like many programs, a shell prints a prompt when it is expecting user input. In this text, we use the prompt "shell-prompt:
" in all examples.

We will primarily use the CLI for this course. While virtually all Unix systems have GUIs, they are not always feasible for
use on remote servers. A CLI performs better over slow connections such as WiFi and home Internet. A CLI is also a more
productive interface for many types of work once you develop some skill with it. It provides instant access to virtually unlimited
functionality, whereas a GUI is limited by what fits on the screen.

4.2.1 Addendum: Unix Commands

A Unix command consists of a command name followed by zero or more arguments, separated by spaces or tab characters:

• The command name is either the filename of a program or an internal command that is part of the shell.

• Flag (switch) arguments are special words or characters that tell the command how to behave. The almost always begin with a
"-".

• Data arguments are either actual data values or the names of files/directories containing the data. They should never begin with
a "-".

# Display the name of this Unix machine
shell-prompt: hostname
remote.server.edu

# Display the name of this Unix machine without domain fields
shell-prompt: hostname -s
remote

https://keepassxc.org/
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# Display only the domain name of this Unix machine
shell-prompt: hostname -d
server.edu

# Print the octal value of decimal 64
shell-prompt: printf "%o\n" 64
100

4.2.2 Addendum: Processes

A process in Unix is the execution of a program. I.e., the running of a program, not an unfortunate ritual beginning with a
blindfold and a cigarette. When you log into a Unix system remotely, the first program run is a shell. I.e., the login session starts
a shell process. If Joe and Sarah are both running the shell program tcsh, there are two processes, but only one program.

4.2.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the purpose of the TERM environment variable?

2. What is a shell?

3. What is a GUI?

4. What is an advantage of a CLI over a GUI?

5. What are the components of a Unix command and how are they recognized?

6. What separates command components?

7. What is a process?

4.3 The Unix File-system

To a Unix operating system, a file is simply a sequence of bytes. End of story. Any structure within a file is of no concern to the
operating system and entirely up to individual programs to interpret.

4.3.1 Partitions

Disks and partitions (portions of a disk) may each contain a file system, a tree structure containing files and directories (folders).

On MS Windows, each file system is assigned a drive letter such as C: or D:. Each has a root directory, called "\", e.g. "C:\",
under which all other files and directories are contained.

On a Unix, there is only one root directory, called "/". Note that Unix uses a forward slash to separate file and directory names,
unlike Windows with uses a backslash. Each disk partition under Unix is mounted (associated with a directory in the unified
tree). One file system must be mounted as "/" and others are mounted on subdirectories. The mount command shows all of the
file systems and where they are mounted in the directory tree. In the partial output of mount below, we see that the partition
/dev/mfid0p2, which contains a UFS file system, is mounted as the root directory /. There are ZFS file systems mounted on
/unixdev1, /usr/home, and /usr/src. Each of these would be a different drive letter on Windows.
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shell-prompt: mount
/dev/mfid0p2 on / (ufs, local, soft-updates, journaled soft-updates)
devfs on /dev (devfs)
fdescfs on /dev/fd (fdescfs)
procfs on /proc (procfs, local)
zroot/unixdev1 on /unixdev1 (zfs, local, nfsv4acls)
zroot/usr/home on /usr/home (zfs, local, nfsv4acls)
zroot/usr/src on /usr/src (zfs, local, nfsv4acls)

Addendum: The book discusses IDE/EIDE, and SCSI. These two categories of disk interfaces still exist today, but have evolved.
ATA is another name for IDE. Modern computers use SATA (Serial ATA) and SAS (Serial Attached SCSI) interfaces to replace the
old parallel (multiple data wire) ATA and SCSI interfaces. Hardware engineers have found that we can actually achieve higher
transfer rates over a single wire than we can over multiple wires, because of electromagnetic interference caused by nearby wires.

4.3.2 Directories

A directory is a file system object that documents the names and locations of other file system objects like files and other
directories. In the context of other operating systems, it is often called a folder, as an abstraction to signify that it "contains" files
and other folders.

A directory is actually a special type of file. The name "directory" is an analogy to the directory you might find in a building
lobby listing the names and room numbers of each occupant.

The root directory is the one object in a file system that is not "contained" within another directory. In Unix, it is called "/". I.e.
it has no parent directory.

A full pathname or absolute pathname indicates the complete path from the root directory to any given file system object.
Multiple objects may have the same name, but their absolute pathnames are unique. Absolute pathnames always begin with a ’/’
or a ’~’ (explained shortly).

/usr/home/joe/Programs
/usr/home/sarah/Programs

A home directory is a directory belonging to an individual user, under which most or all of their files and other directories
are found. On many Unix systems, all of the home directories are under /home or /usr/home. On macOS, they are under
/Users.

/home/joe
/home/sarah

A user’s own home directory can be referred to as "~" in many, but not all, situations. A different user’s home directory can be
referred to as "~user". The "~" symbol is not a standard Unix feature, so it will not work in all programming languages. It is
recognized by most shells, however.

The current working directory (CWD) is an absolute pathname that a process prepends to pathnames that are not absolute. It is a
property of every Unix process. It is often referred to as the directory the process is "in" at the moment.

If a pathname does not begin with a ’/’ or a ’~’, Unix prepends the CWD to compute the absolute pathname of the object:

absolute pathname = CWD + "/" + relative pathname

This applies in all programming languages, since construction of the absolute pathname is performed by a kernel routine.

We can change the CWD of our shell process using the cd command and display it using pwd. Typing cd with no directory name
argument changes the CWD to your home directory. (It’s like clicking your heels together three times. See Wizard of Oz if you
didn’t catch that.)

shell-prompt: pwd
/usr/home/bacon
shell-prompt: cd /etc
shell-prompt: pwd
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/etc
shell-prompt: cd
shell-prompt: pwd
/usr/home/bacon

A relative pathname is the path not from the root directory, but from the CWD. If the CWD of Joe’s tcsh process is his home
directory, /usr/home/joe, then the relative pathname of /usr/home/joe/Programs is Programs.

Any pathname that is not absolute (does not begin with a ’/’ or ’~’) is relative to the CWD.

There are two standard special symbols for directory names:

• "." is the CWD. ./Programs is the same as Programs. This is useful for referring to the CWD in some commands, such
as

shell-prompt: cp /etc/motd . # Copy /etc/motd file to the CWD

If you somehow end up with a filename that begins with a ’-’, you’ll have a hard time using it as an argument to any Unix
command, because the command will think the filename is a flag or a set of flags. You can simply prefix it with "./" so it no
longer begins with a ’-’.

shell-prompt: rm -file
rm: illegal option -- l
usage: rm [-f | -i] [-dIPRrvWx] file ...

unlink [--] file
shell-prompt: rm ./-file

• ".." is the parent of the CWD. If the CWD of Joe’s tcsh is /usr/home/joe, then the relative pathname of Sarah’s Programs
directory is ../sarah/Programs.

shell-prompt: pwd
/usr/home/joe

shell-prompt: cd ..
shell-prompt: pwd
/usr/home

shell-prompt: cd ../..
shell-prompt: pwd
/

4.3.3 Permissions

To control access to files and directories, each file system object has nine bits to indicate various permissions. There are three
categories of users:

• User: The individual owner of the object

• Group: The group owner of the object

• Other: All other users on the system

Each of the three categories can have read, write, and/or execute permissions on any given file system object.

Execute permission on a file means that it is a program that people can execute (run). Execute permissions on a directory mean
that a process can search the directory. Without execute permissions on a directory, processes cannot do much with it.

To see the permissions, we run ls -l. The ls command lists a directory and -l is a flag that tells ls to produce a "long" listing,
with more information than the default. If we provide a file or directory name, ls will list that file or directory, otherwise it will
list the CWD.
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shell-prompt: ls -l /
drwxr-xr-x 2 root wheel 1024 Nov 30 12:12 bin/
-rw------- 1 root wheel 4096 Nov 4 16:23 entropy

shell-prompt: cd /

shell-prompt: ls -l
drwxr-xr-x 2 root wheel 1024 Nov 30 12:12 bin/
-rw------- 1 root wheel 4096 Nov 4 16:23 entropy

The partial listing above shows the permissions on the /bin directory and the file /entropy.

The first character is the file system object type. "-" means a regular file and "d" means a directory. There are other types that we
will not cover here.

The next three characters show the user’s read, write, and execute permissions in that order. A "-" means permission is denied,
while an "r", "w", or "x" means read, write, or execute permission is granted.

The next three characters are group permissions, and the last three are "other" permissions.

To change permissions on a file, use the chmod (change mode) command. There are other mode bits associated with each file
system object besides permissions, and chmod can be used to control all of them. We are concerned only with permissions here.

Addendum: We can use symbolic or absolute octal permissions specifiers as arguments to chmod. The symbolic form consists of
a user category with one or more of ’u’ (user), ’g’ (group), and ’o’ (other), followed by a ’+’ or ’-’ to grant or revoke permissions,
followed by one or more of ’r’, ’w’, or ’x’. Bits not indicated by the specifier are unaffected.

Multiple specifiers can be used, separated by commas, but no whitespace!

# Prevent members outside the group from accessing Private-files
# and allow group read access at the same time
shell-prompt: chmod g+rx,o-rwx Private-files

# Allow members of the group and others to read Public-files
shell-prompt: chmod go+rx Public-files

Octal permissions specifiers set all bits absolutely. Each octal digit is three bits, where 1 = grant and 0 = revoke.

# Grant user read/write access, group read access, revoke "other" access
# 750 = 111 101 000
shell-prompt: chmod 750 Public-files

4.3.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a file on a Unix system?

2. What is a filesystem?

3. What is a directory?

4. What is an absolute/full pathname of a filesystem object? Give an example.

5. How do we recognize an absolute pathname?

6. What is a home directory?

7. What is a CWD and what is it a property of?
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8. If the CWD is /home/joe, what is the absolute pathname of "Programs/prog1.c"?

9. How can you change the CWD of your shell process to /usr/local/bin?

10. How can you change the CWD of your shell process to your home directory?

11. How can you rename a file called "-prog2.c" to "prog2.c", given that a ’-’ indicates a flag argument? (Use the mv com-
mand.)

12. How can you change the CWD of your shell process to the parent of the CWD?

13. How can you see the permissions on all the files in /etc?

14. How can you change the permissions on the directory Programs so that members of the group can read it, but nobody else
can?

4.4 The Shell Environment

A shell is a program that implements a command line interface (CLI). It reads in commands (using a simple string input), parses
the command into command name, flags (switches), and data arguments, and then executes the command.

A shell may run under a terminal emulator on a local display, or may run on a remote computer, started by an SSH session.

Since command names and arguments are separated by whitespace (spaces and tabs), arguments that contain whitespace are
problematic. We must either enclose them in quotes (single or double) or escape the whitespace characters by preceding them
with a backslash, ’\’.

# Suppose "Program Files" is the name of a directory
ls Program Files # ls gets two arguments, "Program" and "Files"
ls: Files: No such file or directory
ls: Program: No such file or directory

ls "Program Files" # One argument
prog.c

ls ’Program Files’ # One argument
prog.c

ls Program\ Files # One argument
prog.c

Internal commands are part of the shell. The include commands such as cd, which changes the CWD of the shell process.

External commands are programs separate from the shell. An external command is simply the filename of any executable file,
such as a compiled C program or a Python script.

4.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why are arguments containing whitespace problematic and how do we get around the problem?

2. What are internal commands?

3. What are external commands?
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4.5 Getting Help

In the early days of computing, documentation was provided in the form of paper (often ring-bound) manuals. Computer users
would actually have to get up out of their chairs, walk to where the manuals were kept, and walk back to their desk. The designers
of Unix sought an end to this injustice and invented the idea of online documentation, which could be viewed on the terminal
screen. This way, they could come to work in the morning, sit in their chairs, turn their heads toward the screen and move nothing
but their fingertips until the workday ended 10 to 16 hours later. Company staff would stop by once a day to refill the intravenous
coffee drip and remove spider webs.

Aside
If there is one trait that best defines an engineer it is the ability to concentrate on one subject to the complete exclusion of
everything else in the environment. This sometimes causes engineers to be pronounced dead prematurely. Some funeral
homes in high-tech areas have started checking resumes before processing the bodies. Anybody with a degree in electrical
engineering or experience in computer programming is propped up in the lounge for a few days just to see if he or she snaps
out of it.
-- The Engineer Identification Test (Anonymous)

All standard Unix commands, C library functions, and some system files, are documented in simple markup files called man
pages. Man pages are not always a good tutorial for a given subject, but are usually the best reference for looking up details
quickly. For example, if you want to find out what flag arguments are available for the ls command, run:

shell-prompt: man ls

The man command uses the more command to view the man page. The more command is a paginator, which displays a text
file, allowing the user to move forward or backward one line or one page at a time, search for text, etc. A few of the most useful
keys when using more:

• ’h’: Display help screen, showing available key commands.

• Space bar: Move forward one page.

• ’b’: Move back one page.

• Enter, or down-arrow: Move forward one line.

• Up-arrow: Move back one line.

• ’/’: Search forward for a string, entered after typing ’/’.

Man pages are good for relatively simple programs and functions. For highly complex programs, the flat file program is difficult
to navigate. If you want to experience the pain for yourself, try running man tcsh or man bash. These man pages are several
thousand lines long. Such complex programs are better documented with a system that supports easy navigation, such as HTML.

The "SEE ALSO" section of each man page is an enormously valuable resource for learning about the existence of Unix com-
mands, library functions, etc. Scroll down to the "SEE ALSO" section for a quick look every time you read a man page.

4.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What suffering did our forefathers have to endure in order to read documentation? How was this injustice finally eradi-
cated?

2. How can you find out what arguments are required by the strcmp() function?
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3. What are man pages generally good for and not so good for?

4. How can you find out what command or functions are available related to computing the sine of an angle?

5. How can you find out what keystrokes control the viewer while reading a man page?

6. How can you use man pages to discover related commands and functions?

4.6 Some Useful Commands

A basic set of useful Unix commands is included in the lab manual and will be covered in lab, where you should try them out
during class.

Also see the book for a brief list of common commands.

Here are a few examples:

cp /etc/hosts . # Copy /etc/hosts to the CWD
mv pro1.c prog1.c # Rename pro1.c to prog1.c
mv ../prog1.c . # Move prog1.c from the parent of CWD to CWD
rm prog1.o # Remove prog1.o
cat file.txt # Echo contents of file.txt to the terminal
head -n 10 file.txt # Display first 10 lines of file.txt
tail -n 10 file.txt # Display last 10 lines of file.txt
grep aardvark file.txt # Show lines in file.txt containing "aardvark"
vi file.txt # Edit file.txt with Unix-standard visual editor
mkdir Program1 # Create directory Program1 in CWD
mkdir ./Program1 # Same as above
clear # Clear the terminal screen
date # Show today’s date

4.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What Unix command could you use for each of the following tasks? Just name the command, no explanation needed.

• Copy files
• Move or rename files
• View a text file on screen at a time
• View the first N lines of a file
• View the last N lines of a file
• Search a file for strings or patterns
• Sort a text file line-by-line
• Create a directory
• Reformat a C program
• Combine files into an archive
• Display a calendar for this month

4.7 A Few Shortcuts with T-shell and Bash

In the olden days, shells were very primitive and offered no features to edit commands other than backspacing to the location of
an error and retyping everything after it. Modern shells offer very sophisticated features to help minimizing typing.
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4.7.1 Command History

The shell history is a memory of recently entered commands, usually at least the last 1,000. We can see the history by typing
history.

shell-prompt: history
991 9:39 ape unix.dbk
992 9:40 cd Books/Computer-books/C-Unix-lab/
993 9:40 ls
994 9:40 ape unix-overview.dbk
995 9:47 svn add useful-unix-commands.dbk
996 9:48 make
997 9:48 ps
998 9:53 ape useful-unix-commands.dbk
999 11:37 history

You can execute previous commands using ’!’ followed by a history number or any number of characters at the beginning of
a previous command. This will rerun the last command that began with those characters. Using the history above, the make
command can be rerun using !996, !m, !ma, etc.

You can use the arrow keys to move around the command history as if editing a file. The up arrow will move back to the previous
command, and the down arrow to the next one. Left and right arrows will move around the currently displayed command.

Instructor should demonstrate or reader should try this.

4.7.2 File Specification: Globbing

Sometimes we want to provide many filename arguments to a command. Unix shells have a feature that allows us to indicate a
"glob" of files with a simple pattern, rather than typing all the filenames. A ’*’ represents any sequence of characters, including
none. For example, if a directory contains thousands of files, and we want to list just those with names ending in ".c", we can use
the following:

shell-prompt: ls *.c

Or, to remove all files with names ending in ".o":

shell-prompt: rm *.o

The shell expands "*.c" to a list of filenames that end in ".c" before running the ls command. If there are three C programs in the
CWD called "main.c", "search.c", and "sort.c", then the shell will actually execute the following command after expanding the
glob:

shell-prompt: ls main.c search.c sort.c

A list or range of characters enclosed in square brackets will match any one of those characters. For example, if a the CWD
contains files prog1.c through prog9.c, the following would match prog3.c, prog4.c, and prog5.c.

shell-prompt: ls prog[345].c
shell-prompt: ls prog[3-5].c

4.7.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How can you see a list of recently executed commands?

2. How can you execute the most recent command beginning with "cc"?

3. How can you scroll back through the last few commands?

4. How can you remove all the files in the CWD with names ending in ".core"?



C/Unix Programmer’s Guide Lecture Outline and Addendum 49 / 255

4.8 Unix Input and Output

4.8.1 Standard Streams

All Unix processes have at least three file streams open from the moment they are born: The standard input, standard output,
and standard error. The standard input is attached to the terminal keyboard by default. The standard output and standard error
are both attached to the terminal screen by default. Hence, program output to both may be mixed up on your screen. Figure 4.1
depicts the relationship between devices, streams, and a process.

Figure 4.1: Standard Streams

When we run a command such as ls, it sends normal output to the standard output and error, warning, and informational messages
to the standard error.

Note
Unix programs NEVER receive input from or send output to a specific hardware device directly. They always send and receive
data through streams (or the lower level file descriptors underlying streams).
The statement "The ls command lists files on the terminal screen." is incorrect. Unix does not work that way.

4.8.2 Redirection

Any Unix program can have its streams or descriptors disconnected from one file or device and connected to a different one. This
is called redirection. Unix shells make this very simple. To redirect the standard output to a file, we simply place the filename
after ’>’ in the command:

shell-prompt: ls > ls-output.txt

This will create a file called ls-output.txt which will contain the output of ls. The output will not appear on the screen,
since the standard output was disconnected from the screen and connected to the file ls-output.txt, as shown in Figure 4.2.

Figure 4.2: Redirection

Likewise, we can redirect the standard input by placing a filename before ’<’. Think of < and > as arrows pointing in the direction
of data flow. In most modern shells, we can redirect the standard output and standard error together using ’>&’. In some shells,
we can redirect the standard error separately using ’2>’. ( It uses ’2’ because the integer file descriptors for standard input,
standard output, and standard error are 0, 1, and 2. )
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4.8.3 Pipes

We can also redirect the output of one process straight to the standard input of another. This saves time and space by running
both processes at the same time and eliminating the need for a temporary file:

# Run ls, saving the output, then use more to view the output
shell-prompt: ls > ls-output.txt
shell-prompt: more ls-output.txt

# Run ls and pipe the output directly through more
shell-prompt: ls | more

4.8.4 Device Independence

Redirection and pipes are made possible by the concept of device independence. Device independence means that every input
and output device on a Unix system is read or written in exactly the same way as an ordinary file. In fact, most devices have
a filename under the /dev directory. For instance, the mouse or touchpad may be represented as /dev/sysmouse and the
keyboard as /dev/kbd0.

All Unix commands can read or write devices just like ordinary files. For example, one could print a program a text printer using
a command such as cat prog1.c > /dev/printer.

C programs use the same read and write functions to access a file, the keyboard, the mouse, or a network connection.

4.8.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the standard streams used by all Unix processes and to what device are they normally connected?

2. Is it correct to say that a Unix program takes input from the keyboard? Why or why not?

3. What is redirection?

4. Show a Unix command that writes the last 10 lines of the file input1.txt to the file input1-last-10.txt.

5. Show a Unix command that runs the program prog1, which is in the CWD, and reads input from the standard input, using
input1.txt as input, and shows the output of the program one screen at a time.

6. What is device independence?

4.9 Job Control

Unix commands can be run in the foreground or the background. The only difference is that the foreground process receives
input from the keyboard. All background processes must have their input redirected from another source. It would be an amazing
coincidence if multiple processes could all use exactly the same input, so it makes no sense to send keyboard input to more than
one process. Multiple processes can all send output to the same terminal screen, though this is not likely a good idea, since it
would be very confusing to anyone looking at the screen. Background processes should generally have their output redirected as
well.

The commands shown so far have all been foreground processes. We can run a process in the background simply by placing an
’&’ at the very end of the command:

shell-prompt: long-running-program < input.txt >& output.txt &
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Now the process is running in the background, and the shell immediately takes another command rather than waiting, as it
normally would for a foreground process.

We can terminate the foreground process by typing Ctrl+c.

We can suspend the foreground process by typing Ctrl+z. It can then be resumed in the foreground by typing fg, or in the
background by typing bg.

4.9.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the difference between a foreground process and a background process?

2. How can you terminate the foreground process?

3. How can you pause the foreground process, list the contents of the CWD, and then resume the process in the foreground?

4. How can you run a ./prog1 so that is immediately runs in the background and you can continue using the shell for other
commands?

4.10 Shell Variables and Environment Variables

A Unix shell is actually a language interpreter than supports conditionals, loops, etc. and uses variables, like any other pro-
gramming language. When you enter Unix commands at the shell prompt, the shell is actually running a program as you type
it.

All shell variables are strings. There are no integers, floating point values, or other types.

Some shell variable names are reserved and have special meaning, such as prompt in tcsh and PS1 in bash, which indicate
what the shell prompt should look like. You can change your shell prompt by changing the prompt variable. We can see all of
the current shell variables by typing set.

shell-prompt: set

Environment variables are like shell variables, but they are a property of every Unix process, not just a shell process.

The most important property of environment variables as that they are passed on to child processes. When you run an external
command from the shell, all environment variables in the shell process are inherited by the new process created to run the
command.

This is a simple form of interprocess communication (IPC), which is covered in detail in Chapter 28.

For example, we can set the LSCOLORS environment variable in the shell process. It is inherited by the process running the ls
command and used to colorize the output. The TERM environment variable is used by programs that need to control the terminal
screen and understand special keys such as F1 and arrow keys, which send a magic sequence rather than a single character.

One of the most important environment variables is PATH, which contains a colon-separated list of directories that are searched
for external commands. Most commands are installed into one of the "bin" directories:

shell-prompt: printenv PATH
/usr/local/bin:/usr/bin:/bin

If a program is not in one of the directories in your PATH, you will get a "command not found" error when you try to run it.
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4.10.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a shell variable?

2. Can we use any name we want for a shell variable?

3. What is an environment variable?

4. Are environment variables always created by a shell process?

5. How does the shell find the programs that constitute external commands?

4.11 Shell Scripts

Thanks to device independence, the input of a shell process can be redirected from a file rather than the keyboard, just like any
other Unix program. This means that anything you type at the shell prompt can also be placed in a file called a shell script, which
we can then run repeatedly.

Note Any complex command or sequence of commands that you might want to run again should be placed in a script rather
than typed in repeatedly.

Since there are multiple shells in Unix and the commands in a script may not be compatible with the shell we use interactively,
we need to specify which shell should run the commands in our scripts, using a shebang line. The shebang line is a special
comment that begins in the very first character of the file. The most portable shell to use for scripting is the POSIX Bourne shell,
/bin/sh. Every Unix systems have a Bourne shell, while other shells are mostly add-one packages. A complete Bourne shell
script would appear as follows:

#!/bin/sh -e

ls -als
hostname

The -e flag tells the Bourne shell process to terminate if any of the commands it executes fail (return a non-zero status).

Bourne shell is standardized by POSIX, so POSIX Bourne shell scripts should run without modification on any system. Other
shells, such as bash and tcsh have many additional features, but they are primarily improvements to the CLI for interactive use.
There are some additional features for scripting that POSIX Bourne shell does not have, but they don’t make scripting much
easier.

Caution
Only Bourne shell and C-shell (csh) should use an absolute pathname in the shebang line. All other shells, such as
bash or tcsh, may be installed in different directories on different Unix systems, e.g. /bin, /usr/local/bin,
/opt/local/bin, etc. To accommodate this, we use a different shebang form:

#!/usr/bin/env bash

set -e # Enable terminate-on-error

ls -als
hostname

Using /bin/bash is not portable.
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4.11.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a shell script?

2. What Unix feature makes shell scripts possible?

3. Which of the many Unix shells is best for writing portable scripts?

4. Is the best shell for scripts also the best for interactive use?

5. What should the shebang line look like for a Bourne shell script?

6. What should the shebang line look like for a bash script?

4.12 Advanced: Make

Make is a tool that compares time stamps on a source file and a target file generated from the source, and runs a specified
command if the source is newer.

Note
Make is commonly used to compile programs, but it is not just for programming. It can be and often is used to build many
kinds of generated files. Keep an open mind when thinking about make as you may find it useful for many things besides
programming.
This PDF is built from multiple DocBook XML source files using make. The book is built from multiple LaTeX source files using
make.

Make is commonly used for building an executable file from multiple source files. When a programmer edits a source file and
saves the changes, the time stamp is updated, so that file becomes newer than the executable file. Running make causes that file
to be recompiled to rebuild the executable.

4.12.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What does make do?

2. What can make be used for?

3. What is make commonly used for?
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Part II

Programming in C
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Chapter 5

Getting Started with C and Unix

Note We cover this in roughly one 50-minute lecture, though for some courses it may be reasonable to teach Unix in more
depth.

The world desperately needs good C programmers. A great deal of time and resources are wasted by interpreted language scripts
doing heavy computation that a proper C program could do in 1/100 the time. In scientific computing, the same solution is
often reinvented hundreds or thousands of times as a shell or python script, because no one has taken the time to develop a
stable, installable software project to perform the task. The reason, for the most part, is simply that they don’t know how. Shell
scripting, Python, or R are often the only language they know, so they end up using them inappropriately, writing duplicate
disposable scripts that perform poorly, do no error checking, and are often incorrect. Countless of man-hours are wasted on this
duplicated effort, despite the fact that installing a tool for the task could be as easy as "pkg install tool-name", if someone took
the time to write one.

My work as a bioinformatician aims to do just that, and to show others how it can be done, so we can all get our work done more
easily and spend more time with our families and friends. https://github.com/auerlab/.

5.1 What is C?

C is a high-level, portable programming language with low-level capabilities and performance. It offers all of the most important
features of a high level language, such as flow control constructs, subprograms, structures, and type definitions, while at the
same time making it possible to do things that are otherwise only possible in assembly language. It also offers run time perfor-
mance close to or equal to that of assembly language. C is used on all kinds of devices from the smallest microcontrollers to
supercomputers.

An example at the low end is OpenVex, a 100% C firmware for Vex Robotics PIC-based microcontrollers, which have only 32
KiB of flash program memory and about 2 KiB of data RAM. OpenVex was developed using the open source SDCC (Small
Device C Compiler). (https://github.com/outpaddling/OpenVex)

An example at the high end is samtools, one of the most heavily used tools in the bioinformatics field. Samtools is often used to
process many terabytes of data on HPC (High Performance Computing) clusters. (https://www.htslib.org/)

Most C code in use today conforms to one of the ANSI or ISO standards. New standards are release about once every decade,
but very few changes have been made to the language since the 1990s.

C is perhaps the simplest high-level language. The designers, led by Dennis Ritchie, made a conscious decision to leave out any
features that could be implemented as a C function. This keeps the compiler simple and fast, and minimizes the learning curve.
The C language itself can be mastered in a few months by a capable college student. From there, extending knowledge is a matter
of learning about available function libraries.

C++, in contrast, is one of the most complex languages ever created. It would take at least three or four semesters to master all
the features of C++.

https://github.com/auerlab/
https://github.com/outpaddling/OpenVex
https://www.htslib.org/
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5.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Is C a high-level language or a low-level language?

2. Compare C and C++.

3. How long should it take to master C? C++?

5.2 C Program Structure

The general layout of a simple C program includes the following components:

1. A block comment describing the program.

2. One or more #include directives to include header files, which have a filename ending in ".h". Header files add functionality
that is not part of the C language itself by defining named constants such as M_PI, derived data types such as FILE and
size_t, and the interfaces for all standard library functions.

Header files should never contain executable C statements. Those belong in the C source files (".c" files).

3. Main program body (required):

(a) int main(int argc, char *argv[])

(b) {

(c) Variable definitions/declarations + comments

(d) Program statements + comments

(e) A return statement

(f) }

C and C++ are case-sensitive, so PRINTF is not a valid substitute for printf.

Example 5.1 A Simple C Program

/***************************************************************************
* Description:

* Compute the area of a circle given the radius as input.

*
* History:

* Date Name Modification

* 2013-07-28 Jason Bacon Begin

***************************************************************************/

#include <stdio.h> // Contains prototypes for printf() and scanf()
#include <math.h> // Defines M_PI
#include <sysexits.h> // Defines EX_OK

int main(int argc,char *argv[])

{
// Variable definitions for main program
double radius,

area;

// Main program statements
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printf("What is the radius of the circle? ");
scanf("%lf", &radius);
if ( radius >= 0 )
{

area = M_PI * radius * radius;
printf("The area is %f.\n", area);

}
else

fprintf(stderr,"The radius cannot be negative.\n");

return EX_OK;
}

#include is an example of a preprocessor directive. #include inserts a header file into the program at the point where it
appears.

Header files contain constant definitions, type definitions, and function declarations. Modern C function declarations are called
prototypes, and they define the interface to the function completely. A prototype for the printf() function looks like this:

int printf(const char *format, ...);

The example above contains the function definition for main(), the entry point into the program. A definition begins like a
declaration/prototype, but also includes the function body (the statements that do the work of the function).

C compilers do their job in one pass through the source file, so forward references (references to objects that are declared or
defined later) are not allowed. The compiler only needs to see a prototype for functions that is not defined before it is referenced.

The printf() statement in the example above is a function call. C programs generally contain many function calls, since they
are used in lieu of language features that were deliberately left out.

C is a free format language, which means that the compiler treats the end of a line the same as a space or tab. The end of a
variable definition or a statement is indicated by a semicolon (;).

5.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the major components of a C program?

2. What is a free-format language?

5.3 A Word about Performance

C is the fastest high-level language in existence. The only way one is likely to write faster code is by coding in assembly language.
C programs are typically tens to hundreds of times as fast as the same design implemented entirely in an interpreted language, as
we saw in Section 1.2.

This does not mean that coding in C automatically makes your programs as fast as they can be. Choosing the most efficient
algorithms is usually the most important decision for achieving performance. An O(N*log N) algorithm implemented in an
interpreted language will run faster than an O(Nˆ2) algorithm implemented in C for some value of N and all greater values. In
general, the factors that affect performance, from most to least important are:

1. Algorithm (e.g. selection sort vs quicksort, linear vs binary search)

2. Programming language (compiled languages are orders of magnitude faster than interpreted, simpler languages tend to run
faster than more complex and abstract languages).
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3. Code optimizations (integers are faster than floating point, using less memory leads to faster average memory access, etc.)

4. Parallelism (using multiple cores may help, but is not always possible)

5. Hardware speed (upgrading your PC is generally the least cost-effective way to make programs faster). However, it might
be the only way if you don’t have access to the source code.

Optimizing all of the code is foolish, however. Most parts of most programs do not contribute much to run time. Profiling is the
process of determining where a program uses most of the CPU time. This can be done by inserting timers into the code (check
the clock before and after a loop), or using compiler tools in some cases.

5.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How does the performance of C programs compare to the same algorithm/design implemented in other languages?

2. What are the major factors in program performance, from most to least important?

3. What is profiling and how does it help us with program performance?

5.4 Some Early Warnings

C and other high-performance languages achieve their speed in part by not performing run time checks. Some languages, for
example, check every array reference to ensure that the subscript is within range, and check for integer overflow after every
arithmetic operation. This has a high impact on program speed. C compilers do not perform such checks by default. This makes
it possible to write programs that are much faster when such checks are not necessary.

Interpreted languages generally do perform such checks, and the performance penalty is minimal in this case. Since interpreted
languages spend about 99% of their time parsing the code, even doubling the run time of the other 1% wouldn’t make a noticeable
difference.

These conditions only occur due to program bugs, and the designers of C thought it better to let bugs be discovered by other
means and let programmers learn to be disciplined and write safe code, rather than become dependent on the compiler to find
bugs for them.

It has often been said that C makes it easy to shoot yourself in the foot, while C++ offers more ways to shoot yourself in the foot.

5.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why does C not check for run time errors by default?

5.5 Coding and Compiling a C Program

5.5.1 Coding

C code can be written using any text editor. However, it is highly advisable to use an Integrated Development Environment
(IDE). An IDE is an editor specifically designed to facilitate programming, by recognizing language features and interfacing
with compilers and interpreters.
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Without an IDE, one would have to either exit the editor to compile and test the program, or compile and test from another
terminal emulator window. With an IDE, the programmer can run the compiler from within the editor. For example, in Another
Programmer’s Editor (APE), one can build the executable simply by typing F7 (or Esc followed by x if the F7 key does not
work). One can build and run by typing F5 (or Esc followed by r). See Figure 5.1.

IDEs also offer features such as syntax colorization, which makes the code easier to read and flags typos before you even attempt
to compile or run the code. E.g., if a keyword such as "while" is mistyped, it will not be colorized, which you will likely notice
immediately.

Figure 5.1: APE Build Menu

Most IDEs are graphical applications, which makes their use on remote computers over an SSH connection dubious. APE is a
terminal-based application, which works just as well on a remote machine as on the local machines.

Caution Do not use a Windows editor to create text files for Unix. The Windows text file format is slightly different,
having carriage returns at the end of each line. Some Unix programs will choke on these carriage returns.

5.5.2 Compiling

A compiler is a complex program that translates high level language source code to machine code. It must "understand" high-
level constructs such as conditionals, loops, and subprograms. It should not be confused with an assembler, which is a very
simple program that translates assembly language source code to machine code, one line at a time.



C/Unix Programmer’s Guide Lecture Outline and Addendum 60 / 255

There are many C compilers, but most Unix systems use either clang/llvm (FreeBSD, macOS, etc) or gcc (Linux, OpenIndiana,
etc). On all Unix system, the default compiler, whether it is clang, gcc, or something else, can be invoked as cc. There is no
reason to explicitly invoke clang or gcc, unless you want to use a non-default compiler, which is rarely beneficial.

Compilation Stages

In all three languages, production of an executable file involves up to three steps, outlined below and in Figure 5.2.

1. Preprocessing: This step runs the source code through a stream editor called the preprocessor, which is designed specif-
ically for editing source code. The preprocessor makes modifications such as inserting the contents of header files and
replacing named constants with their values, and outputs modified source code.

The preprocessor command is usually cpp ( short for C PreProcessor ).

The preprocessor is described in detail in Chapter 13.

2. Compilation: This step translates the preprocessed source code to machine language (also known as object code), storing
the resulting machine code in an object file. The object file is not a complete executable file, as certain components
necessary to load and run a program have not been added yet. Object files on Unix systems have a file name extension of
".o".

3. Linking: This step combines the object files from the compilation step with other object files stored in libraries (precom-
piled collections of functions) and the machine code needed to start a program. The result is an executable file such as
/bin/ls or any other Unix command.

The linker program is usually called ld.

An example of a library is /usr/lib/libc.so, the standard C library. It contains the object files for many standard
functions used in the C language, such as printf(), scanf(), qsort(), strcpy(), etc.

You generally do not need to run these steps individually. They are executed automatically in sequence when you run a compiler
such as cc, clang, gcc, or gfortran.

Figure 5.2: Compilation

Compilers include an object code optimizer, which combs through the machine code generated by the compiler’s code generator,
looking for ways to make it shorter and faster. The portable way to run the optimizer is using -O, -O2, -O3, etc. with the cc
command. Higher numbers mean more aggressive and riskier optimizations. With clang, -O and -O2 are actually the same.

Optimization levels beyond -O2 generally have very little impact on performance. Higher level optimizations may also make it
difficult or impossible to use a debugger to locate problems in the source code. The executable contains a map connecting source
code line numbers to locations in the generated machine code. Debuggers need this map to tell you where a problem occurred in
the source code. Aggressive optimizations may rearrange the machine code to the point where it is no longer possible to maintain
this map.

There are also more specific optimization flags, such as -march=native, which tells the compiler to utilize advance machine
instructions on the local CPU. This will make the executable non-portable. I.e., if you compile on the latest AMD Ryzen
processor with this flag, the compiler will generate instructions that don’t exist on an Intel i5. Compiling with just -O will only
generate instructions common to the entire family of CPUs to which the local CPU belongs.
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5.5.3 A First Example

Addendum: The pico editor has been replaced by nano. Book says "** Type in the sample program above" when the example is
actually on the next page.

Instructor will demonstrate the following:

shell-prompt: nano hello.c

After saving the file and exiting the editor, we compile and run the program:

shell-prompt: cc -Wall hello.c -o hello
shell-prompt: ./hello
Hello, world!

Instructor may now to the same with APE, to demonstrate how much more effective an IDE is than a simple text editor like nano.

shell-prompt: ape hello.c
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5.5.4 Handling Errors and Warnings

Error and warning messages are your friends. It is much better to get an error or warning message telling you exactly where a
potential problem is, than to spend time trying to figure it out based on incorrect output or program crashes.

Always use the -Wall flag when compiling to help minimize your debugging effort.

Both clang and gcc have a -Wall flag that requests all possible warning messages to be generated. Wise programs always use
this flag during development and clean up the code to silence warnings. This is an easy way to eliminate most bugs from your
code.

In addition to compiler warnings, you can clean up the code further by running cpplint file.c or splint file.c. These commands
check for formatting and style issues, security holes, etc.

Demonstrate.

5.5.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is an IDE?

2. What are some advantages of IDEs over simple text editors?

3. What are the stages in building an executable from a C source file?

4. What command should usually be used to compile C programs on a Unix system?
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5. What is the safe way to run the object code optimizer so that debuggers will work and the executable will run on all related
CPUs?

6. How do we get as much help as possible finding bugs in our code from clang or gcc?

7. What other tools can we use to check for potential problems in our code?

8. Following the sine example in the lab exercises, write a C program that asks the user for a number and prints the square
root of the number. The program should print the best possible input prompt. Use the scanf() function for input and the
standard library sqrt() function to compute the square root. Check the man page for sqrt() to see what header files
and compiler flags it requires.

Make sure the program compiles without warnings when using -Wall. Also run cpplint and splint on the code to check
for style issues.

What is the best name for the source file?
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Chapter 6

Data Types

6.1 Introduction

Different data call for different data types. Some data can only be positive integers. Others may be fractions or irrational numbers.

Our own choices affect the type of the data. Representing monetary amounts in dollars requires fractions, such as $5.99. Repre-
senting them as cents makes everything in integer, e.g. 599 cents.

Choosing the optimal data type for your data is extremely important. The wrong data type can lead to reduced performance or
incorrect results.

Changing the data type later is costly. Modifying a finished programs makes it unfinished again, and requires thorough retesting.
THERE IS NO CHANGE SO SMALL THAT RETESTING IS NOT NECESSARY.

6.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why is it important to choose optimal data types?

2. What happens if we discover a need to change a data type after a program is "finished" (knowing that no program is ever
really finished)?

6.2 Variables

A variable is a name, or identifier, that refers to a memory location. The compiler converts variable names to memory addresses
that are used in the machine language executable. A piece of data stored in memory is called an object. Hence, a variable in a
program refers to an object.

C variable names have the same limitations as most other languages. I.e., they must begin with a letter or an underscore, which
can be followed by more letters, underscores, or digits. The maximum length of a variable name in modern compilers is more
than we would ever want to type. The rules for naming variables can be expressed using the regular expression "[A-Za-z_][A-
Za-z_0-9]*", which means one character in the set containing A-Z, a-z, and _, followed by zero or more characters in the set
containing A-Z, a-z, _, and 0-9.

Languages like C require us to define all variables. Some other languages, such as Matlab and Unix shells, do not. Variables in
those languages are implicitly defined and allocated memory when they are first assigned a value.

When we define a variable in C, we are assigning a name and a data type, as well as allocating memory to contain the object.
The data type tells the compiler what binary format should be used when storing the object in memory. For example, a C int is
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stored in 16-bit or 32-bit two’s complement format, an unsigned short in 16-bit unsigned binary, and a double in 64-bit
IEEE floating point format. The compiler and the library functions take care of managing the binary formats, but it is important
for us to know the limitations of each format.

Note Defining and declaring are not the same thing. A declaration does not allocate space, but merely states the type and
possibly other attributes of something defined elsewhere, usually in a different source file. Declarations are also known as
allusions. This will be clarified in later sections. For now, just be aware of the distinction.

Example 6.1 Example
Write a program that inputs the radius of a planet in kilometers and prints the volume.
What data type(s) should we use for the radius and the volume, and why? Do we need fractional components? Do we even know
the radius of a planet that accurately? Are planets perfectly round, so the radius is consistent to that degree? What are the ranges
of radius and volume? The radius of Jupiter is 71,492 km according to Wikipedia. There are probably bigger planets in other
solar systems. Does a 16-bit integer have enough range? How about a 32-bit integer?
Use the Unix bc command to compute the volume of Jupiter: 4 / 3 * pi(16) * 71492ˆ3
We see that there are many questions that we need to answer before choosing a data type. Many programmers are unaware
of these issues, which results in many problems for them and for the users of their software. We will clarify these issues in
subsequent sections.

#include <stdio.h>
#include <sysexits.h>
#include <math.h>

int main()

{
// What C data type has enough range for Jupiter’s volume?
// The radius is 71,492 km, producing a volume of 1530597322872155.9 km^3.
// We’ll use double here to make sure that we have enough range,
// and discuss this more later after examining C’s data types.

double radius, volume;

fputs("Please enter the radius of the planet in kilometers: ", stdout);
if ( scanf("%lf", &radius) == 1 )
{

volume = 4.0 / 3.0 * M_PI * radius * radius * radius;
printf("The volume is %f km^3\n", volume);
return EX_OK;

}
else
{

fputs("Error reading the radius. Please try again.\n", stderr);
return EX_DATAERR;

}

return EX_OK;
}

The program above reads a string of characters entered by the user using scanf(). The scanf() function converts the
character sequence to IEEE floating point format and stores the bits at the memory location allocated for radius. The program
then computes the volume as an IEEE floating point value and stores the result at the memory location allocated for volume.
Finally, the printf() converts the IEEE floating point value at memory location volume to a sequence of characters that
people can read and sends them to the terminal screen.
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Programming with Style
Note that the variable names used above are unambiguous. We did not use abbreviations such as "r" or "v" or "rad" or "vol".
Doing so would demonstrate laziness or impatience. Fully descriptive variable names make the program self-documenting.
This reduces the need for comments, so in a sense, it is a form of enlightened laziness.
The variable volume in the program above is not really necessary. We could have simply placed the expression in the
printf() call. However, using a variable this way also makes the program more self-documenting, as well as preventing
statements from becoming too long and complicated. The combined statement below takes a bit more effort to read than the
two separate ones above. It’s a small difference, but hundreds of situations like this one add up to a lot of fatigue during a
12-hour day a coding.

printf("The volume is %f\n", 4.0 / 3.0 * M_PI * radius * radius * radius);

6.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How does machine language access data in memory?

2. What is a variable in a high-level language?

3. What happens when a user types a real number as input to the scanf() function?

4. Should variable names of the same type be placed on the same line or on separate lines?

5. What is the advantage of using complete words as variable names instead of abbreviations?

6. How much training should a user need before using a program?

6.3 C’s Built-in Data Types

Unlike some languages (e.g. Matlab, Fortran), C supports only scalar (dimensionless, single-value) built-in types. Aggregate
types (arrays, structures) can be defined by the programmer using the scalar types.

All C integer types can be either signed (two’s complement) or unsigned. Use the unsigned modifier before the type to specify
unsigned. There is also a signed modifier, but it is rarely used since signed in the default.

signed int a; // Two’s comp
int b; // Same as a
unsigned int c; // Unsigned binary

Primitive Java data types have fixed sizes. For example, a Java int is 32 bits and a long is 64 bits. This makes code easily
predictable regardless of the CPU on which they run. However, it has a cost in terms of performance.

In contrast, C int and long sizes depend on the CPU architecture. This means that we do not know their exact size or range
when we write the code. However, this allows programs to achieve maximum performance on all CPUs. Adding 32-bit integers
on 16-bit CPU or 64-bit integers on a 32-bit CPU requires two machine instructions, which slows down the program. To avoid
this performance issue, C defines the int type so that operations can be completed by one machine instruction on virtually any
CPU. The int is usually 16 bits on a 16-bit CPU and 32 bits on 32-bit and 64-bit CPUs. The minimum size is 16 bits, so
int will require multiple precision arithmetic on 8-bit CPUs. However, 8-bit CPUs are rare and nobody expects them to be fast
anyway. The long type is normally 32 bits on 8-bit, 16-bit, and 32-bit CPUs, but is 64 bits on 64-bit CPUs.
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Caution Since int and long have variable size, we need to make contradictory and pessimistic assumptions about
them. E.g., since an int may be either 16 or 32 bits, depending where our code is compiled, we must assume that it
has the range of a 16 bit integer (-32,768 to +32,767) but the memory requirements of a 32-bit integer (4 bytes each). If
we need greater range, int will not work on some CPUs. If we need to conserve memory for a large array, we should
use short, which is always 16 bits.

Addendum: The book’s integer data types table does not include types for 64-bit CPUs, which were not yet available when the
book was written. Also new since publication is support for complex numbers (introduced in the C99 standard). Table 6.1 shows
the data types available in modern C.

C Type Description Range Precision
char 8-bit signed integer -128 to +127 Exact
short 16-bit signed integer -32,768 to +32,767 Exact

int

16 or 32-bit signed integer
(usually 16 bits on 8 or
16-bit processors, 32-bits
on 32 or 64-bit processors)

-32,768 to +32,767 or
-2,147,483,648 to
+2,147,483,647

Exact

long

32 or 64-bit signed integer
(usually 32 bits on 16-bit
and 32-bit processors, 64
bits on 64-bit processors)

-2,147,483,648 to
+2,147,483,647 or +/-
9.22337203685e+18

Exact

long long 64 or 128-bit signed integer +/- 9.22337203685e+18 or
+/- 1.7014118346e+38 Exact

unsigned char 8-bit unsigned integer 0 to 255 Exact
unsigned short 16-bit unsigned integer 0 to 65,535 Exact

unsigned int 16 or 32-bit unsigned
integer

0 to 65,535 or
4,294,967,295 Exact

unsigned long 32 or 64-bit unsigned
integer

0 to 4,294,967,295 or
1.84467440737e+19 Exact

unsigned long long 64 or 128-bit unsigned
integer

0 to 1.84467440737e+19 or
3.40282366921e+38 Exact

float Almost always 32-bit
floating point

+/- (1.1754 x 10-38 to
3.4028 x 1038)

24 bits (6-7 decimal digits)

double Almost always 64-bit
floating point

+/- (2.2250 x 10-308 to
1.7976 x 10308)

52 bits (15-16 decimal
digits)

long double 64, 80, 96, or 128-bit
floating point

+/- 3.3621 x 10-4932 to
1.1897 x 10+4932)

114 bits (64 decimal digits)

float complex Two floats for real and
imaginary parts Same as float Same as float

double complex Two doubles for real and
imaginary parts Same as double Same as double

long double complex Two 128-bit floating point
values Same as long double Same as long double

Table 6.1: C Data Types

The void type is used to define functions that do not return a value, or pointers (variables that contain memory addresses) that
point to an unspecified type of object. These topics are covered in later chapters.

Addendum: The C language traditionally did not have a Boolean type. C99 introduced the _Bool type, which is not meant to be
used directly (as indicated by the leading ’_’). The header file stdbool.h defines the bool type along with true and false
constants. In reality, Booleans are represented as integers internally.
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6.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a scalar variable?

2. What is an aggregate variable?

3. What is the size of an int in C? A long? An unsigned int?

4. What is the range of an int in C? A long? An unsigned long?

5. When should we use the int data type?

6.4 Constants

Every constant in the C program has a data type, just like a variable. Carelessness when writing constants can affect program
performance or cause incorrect output.

• Any sequence of only digits not beginning with ’0’ is a decimal int. Examples: 255, 13

• Any sequence of only digits beginning with ’0’ is an octal int. Examples: 0, 0377 = 255, 015 = 13

• Any sequence of only digits beginning with ’0x’ or ’0X’ is a hexadecimal int. Examples: 0xff = 255, 0xD = 13

• An integer constant followed by ’l’ or ’L’ is a long int. Examples: 255l, 0377l, 15L

• Addendum: An integer constant followed by ’u’ or ’U’ is an unsigned int. Examples: 255u, 0377u, 15U

• Addendum: An integer constant followed by ’ul’ or ’UL’ is a unsigned long int. Examples: 255ul, 0377ul, 15UL

• A sequence of digits containing a period is a double. Examples: 3.4, 0.56

• A sequence of digits containing a period followed by ’e’ and an integer is a double in scientific notation. Examples: 3.4e5 =
3.4 * 10ˆ5, 5.6e-1 = 5.6 * 10ˆ-1

• A constant like those above followed by ’f’ or ’F’ is a float. Examples: 3.4e5f, 4.6f

• A single character or escape sequence such as \n, \r, \010 (= 8), etc. between single quotes is an int, NOT char!!! In C,
values smaller than an int are promoted (converted) to int before all math operations, so using int speeds up the code by
avoiding conversions. A \ followed by 3 digits inside single quotes is an octal number, sign-extended to int. Examples: ’\377’
= -1, ’\177’ = +127.

• A sequence of characters between double quotes is a string, which is an array of chars. Strings can also contain escape
sequences such as \n or \377.

The compiler adds a null byte (’\0’) to each string constant. C library functions that work with strings expect the end of the
string to be marked with a null byte.

So why is it so important to write constants with the correct type?

double y, x;

// What’s wrong with this code?
x = 8;
y = 3 / 4 * x;

3 / 4 is 0, so y is 0 rather than the expected 6.
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float y, x;

// What’s wrong with this code?
y = 3.0 / 4.0 * x;

3.0 and 4.0 are doubles, which means we are mixing float and double in the expression. Conversions must be done between float
and double, which slows down the program. More on this in Section 8.3.

Addendum, p120: long and int are usually the same on 32-bit computers, but not on 64-bit computers.

Caution
We must know the binary format to fully understand the effects of using constants.

char ch = 255;

printf("%d\n", ch); // Prints -1, not 255. Why?

6.4.1 Named Constants

Constants should almost never be hard-coded, i.e. written in literal form, into program statements. Rather, they should be given
a name, usually in a header file, and the name used in statements.

This makes the code self-documenting and also means that we need only change the value in one place, should it ever need
updating. Most constants used in programs end up being changed at some point in the future. If the value of Pi ever changed,
we would have bigger problems than code maintainability, but most constants in programs are not universal laws of geometry or
physics.

The traditional way to define constants in C is using the preprocessor. By convention, constants are written in all upper case
letters, so that they are easily distinguished from variables:

#define MAX_LIST_SIZE 1000
#define DEBUG 1

This can also be done using the -D flag in the compile command, so that we can toggle a constant value without editing the code:

shell-prompt: cc -O -Wall -DDEBUG=1 file.c

We can also define a constant as a read-only variable by prefixing the type with const. Such a variable can only be assigned a
value in the initializer of the variable definition:

const size_t MAX_LIST_SIZE = 1000;

MAX_LIST_SIZE = 2000; // Compile error

Caution
When defining floating point constants, don’t be lazy. Provide the value to the full precision of the type, so you don’t
cause unnecessary round-off error.

#define PI 3.14 // Sloppy coding
#define PI 3.14159265358979323846



C/Unix Programmer’s Guide Lecture Outline and Addendum 72 / 255

Caution
Don’t reinvent constants. Universal math constants, system-related limits (such as the maximum length of a filename),
etc. are defined in the standard C headers such as math.h and limits.h.

// A small section of /usr/include/math.h
#define M_E 2.7182818284590452354 /* e */
#define M_LOG2E 1.4426950408889634074 /* log 2e */
#define M_LOG10E 0.43429448190325182765 /* log 10e */
#define M_LN2 0.69314718055994530942 /* log e2 */
#define M_LN10 2.30258509299404568402 /* log e10 */
#define M_PI 3.14159265358979323846 /* pi */
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#define M_PI_4 0.78539816339744830962 /* pi/4 */
#define M_1_PI 0.31830988618379067154 /* 1/pi */
#define M_2_PI 0.63661977236758134308 /* 2/pi */
#define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
#define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
#define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */

Note
To see exactly what the preprocessor does with #include and #define, run cc -E file.c | more.

6.4.2 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the data type and decimal value of each of the following?

(a) 45

(b) 0xAu

(c) 012L

(d) 3.1e2

(e) 3.1e2f

(f) ’A’

(g) ’\033’

2. Show a C constant of type int with an octal value of 377.

3. Show a C constant of type unsigned long with a binary value of 10010011.

4. Show a C constant of type double with a value of 6.02 * 10ˆ23.

5. What are the decimal ASCII/ISO values of each byte in the string constant "123\r"?

6. How can we assign an unsigned integer variable its maximum value without knowing the exact value?

7. What is the problem with the following code? Fix it.

double base, height, triangle area;

triangle_area = 1 / 2 * base * height;
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8. What is the problem with the following code? Fix it.

float base, height, triangle area;

triangle_area = 1.0 / 2.0 * base * height;

9. What is "hard coding"?

10. What is a better alternative to hard coding?

11. How can we define a constant MAX_NAME_LEN to 50 in a C program?

12. How can we define a constant MAX_NAME_LEN to 50 in a C compile command?

13. How do we ensure that our floating point constants don’t cause unnecessary round-off error?

6.5 Initialization in Variable Definitions

We can assign a value to a variable where it is defined. However, it is usually better to assign a value immediately before the
code that needs is initialized. This is an example of code cohesion at the lowest level, where statements that belong together are
all in one place. Cohesion is also applied at higher levels, such as member functions (methods) of a class belonging together.

int sum = 0, num;

// 30 lines of code

// Now we have to waste time scrolling back to verify that
// sum is properly initialized
while ( scanf("%d", &num) == 1 )

sum += num;

int sum, num;

// 30 lines of code

// This is more cohesive. We see the initialization of sum right
// where it is needed and don’t have to go looking for it.
sum = 0;
while ( scanf("%d", &num) == 1 )

sum += num;

6.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the pros and cons of initializers in variable definitions?

6.6 Choosing the Right Data Type

Choosing a data type for each variable in a program is not trivial and is extremely important. It could mean the difference between
correct output and incorrect output, and could significantly affect program performance.
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• Avoid floating point like the plague. Floating point arithmetic takes three times as long as integer arithmetic. Floating point is
less precise than an integer of the same since, since some bits are used for the exponent. Comparison of floating point values
is unreliable due to round-off error.

double x;

// Some code that computes x and y

// This will fail if round-off error results in a value of
// 0.999999999999999999999 instead of 1.0
if ( x == 1.0 )
{
}

Floating point is the best option in some situations, but always try to make a program work with integers if possible.

• An int may be either 16 or 32 bits. You do not know where your code will be used in the future. Use int if 16 bits provides
enough precision and 32 bits is not too much memory to use. The latter is only a concern for large arrays.

Int is the fastest data type on all CPU architectures with at least 16-bit word sizes, since it can be processed by a single
instruction.

• A long, may be either 32 or 64 bits, so make the same kind of pessimistic assumptions as we do for int.

Don’t use long if int will suffice. A long may require multiple precision arithmetic on some computers, where it is larger
than the native word size.

• Use short only to save memory or to deliberately limit the range of a variable. We should almost never define a scalar
short variable. Adding two short variables involves converting (promoting) both values to int first, which slows down
the program.

• The char type is generally only used for strings, but if used as a small integer, apply the same logic as for short. A scalar
variable for holding one character should usually be defined as int, not char.

• If an integer type does not have enough range, consider using unsigned before going to a larger type. For example, a
variable that holds positive integers up to 50,000, it cannot be int, which ranges from -32,768 to +32,767. Using long
instead would be foolish, however. An unsigned int provides the necessary range (0 to 65,535) while avoiding multiple
precision arithmetic.

• If floating point cannot be avoided, use double unless you need to conserve memory (e.g. for large arrays). Using float
will not make the program measurably faster and will severely limit precision to about 7 decimal digits, causing more round-off
error in the results.

Table 6.2 shows run times of a simple loop using various data types.

Data Type Run Time
short 0.77
int 0.61
long (same as int on this system) 0.61
long long (multiple precision arithmetic) 1.52
float 3.52
double 3.52

Table 6.2: Execution Time of a Loop with Various Types

Addendum: The header file stdint.h defines derived (not built into the compiler), fixed-sized integer types such as int32_t,
uint32_t, int64_t, etc. for cases where you want to guarantee the exact size and range of an integer variable (unlike int
which varies from one CPU to another) and are willing to accept the cost of multiple precision arithmetic in some cases (such as
uint64_t on a 32-bit CPU). The file inttypes.h includes stdint.h and also defines facilities for reading and writing these
types using printf() and scanf().
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6.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why is it important to choose optimal data types?

2. When should we use floating point types?

3. When should we use int?

4. What is the advantage of using int over explicitly using a 16-bit integer or a 32-bit integer?

5. When should we use short?

6. When should we use long?

7. When should we use unsigned?

8. How do we choose between float and double?

9. What is the optimal data type for a scalar variable containing a person’s age.

10. What is the optimal data type for a large array of a people’s ages.

11. What is the optimal data type for a large grid of ocean depths measured in feet.

12. What is the optimal data type for a scalar variable containing molar concentration of a salt solution, ranging from roughly
10ˆ-10 to 10ˆ20.

13. What is the optimal data type for a large array containing molar concentrations of a salt solution, ranging from roughly
10ˆ-10 to 10ˆ20, and measured to an accuracy of 5 significant figures.

14. What is the optimal data type for a scalar variable containing net income of a company with a maximum of $2,000,000 per
year.

15. What is the optimal data type for a large array of incomes similar to the previous question.

6.7 Creating New Type Names: Typedef

One of the most important features of a high level language is extensibility. The ability to create new data types is a key form of
extensibility. This is very simple in C.

typedef existing-type new-type-name;

It is traditional to end user-defined type names with "_t":

// Save some typing when defining unsigned int variables
typedef unsigned int uint_t;

// Make the code self-documenting when using char to hold small
// integers rather than characters
typedef char tiny_int_t;

// Allow for easy switching between float (to save memory) and
// double (for better precision). Just change double to float here
// and recompile the program for a lower memory executable.
typedef double float_t;

int main()
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{
// Use float_t rather than hard-code double or float everywhere
float_t x, y;

...
return EX_OK;

}

Type definitions should generally be placed in header files, which can then be included in multiple source files that will use the
type.

Caution Addendum: It may be tempting to use #define to create type aliases, but this approach can cause many
problems that are avoided by using typedef, which is just as easy.

6.7.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show a type definition equating age_t to unsigned char.

6.8 Addendum: Enumerated Types

An enumerated type is an integer type with a limited number of named values. The first identifier is assigned a value of 0 by
default.

typedef enum { RED, GREEN, BLUE } color_t;

// Roughly equivalent to
typedef int color_t;

#define RED 0
#define GREEN 1
#define BLUE 2

We can alter the values as follows:

typedef enum { RED = 1, GREEN, BLUE } color_t;

// Roughly equivalent to
typedef int color_t;

#define RED 1
#define GREEN 2
#define BLUE 3
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Chapter 7

Simple Input and Output

7.1 The Standard I/O Streams

All Unix input and output is ultimately performed by the low-level read() and write() system calls (kernel functions),
which read and write blocks of characters to/from a file or I/O device. These functions are covered in Chapter 25.

To create the illusion of inputting and outputting single characters, numbers, and other formatted data, the Unix C libraries
provide a stream I/O interface. When writing to a stream, stream I/O functions place individual characters into an output buffer
(queue), a character array in memory. When the buffer is full, the entire buffer is written to the file or I/O device using a single
write(). Likewise, when reading from a stream, a single read() reads a block of characters into an input buffer, and stream
functions take characters from the buffer until there are none left, and which time the next block is read.

All Unix processes are born with three streams already open, namely stdin, stdout, and stderr. These streams are
normally connected to the terminal, but can be redirected to/from any file or I/O device. More streams can be opened explicitly,
as discussed in Chapter 21.

To use all of the standard I/O functions in this chapter, we need to include the header file stdio.h in our programs.

Note To find out what headers are required for any C library function, run man function-name.

7.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How does all Unix I/O ultimately occur?

2. What is a stream?

3. What standard streams are available in all Unix processes and to what devices are they connected?

4. How do we find out what header files are required for a C library function?

7.2 Single Character I/O

To input a single character from stdin, we use getchar(), which is part of the standard Unix C library. To output a single
character to stdout, we use putchar(). The getchar() function reads a single character from the stdin buffer. If there
are no characters remaining, it reads the next line of block from the file or device in order to refill the buffer. The putchar
writes a single character to the stdout buffer. When the buffer is full, the buffer contents are written to the file or device, and
the buffer is marked empty.
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#include <stdio.h>
#include <sysexits.h>

int main()

{
// Use int for scalar character variables, not char!
// char and short are promoted to int in math operations and
// when passing to functions, so using int in the first place
// avoids overhead
int ch;

ch = getchar();
putchar(ch);

return EX_OK;
}

Normally, input read from a terminal keyboard is line-buffered, meaning the low-level read() reads characters into the input
buffer until return is pressed. The getchar() above will not respond immediately when a key is pressed, but will return the first
character in the buffer after the entire line is entered. This behavior can be changed using methods discussed in Chapter 26. Input
read from a file is normally block-buffered, so if the program above is run with input redirected from a file, an entire block from
disk (typically something like 4096 characters) will be read into the input buffer before getchar() returns the first character.

7.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How does putchar() work with the stdout stream buffer?

2. What data type does getchar() return and why?

7.3 String I/O

The original developers of the standard C library made a few questionable decisions that we have been stuck with ever since.
1970 was a different time, and the designers of early library functions did not foresee the popularity of C and the need for better
robustness and security that is obvious today.

One of the issues is the gets() function, which reads a line of text from stdin into a character array.

#include <stdio.h>
#include <sysexits.h>

#define MAX_STR_LEN 100

int main()

{
// Define an array of char to hold the string
// +1 for the null terminator character
char string[MAX_STR_LEN + 1];

gets(string);
}
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The problem is that this function does not know the size of the target array. Hence, it is possible that someone could type in a
line of 60 characters that the program tries to put in a 40-character array. This will result in corrupting memory addresses that
follow the array, usually other variables defined in the same function. This sort of problem can cause incorrect output, program
crashes, and security holes in some cases.

We could use the more general fgets(), which reads from any stream and requires the size of the array as an argument. This
will ensure that the array is not overflowed, though it will leave the remaining part of the input in the input buffer to be taken in
by the next input function called, which is probably expecting something else.

fgets(string, MAX_STR_LEN + 1, stdin);

Addendum: The gets_s() function, available in C11 (the 2011 C standard), is equivalent to fgets() used with stdin,
except that the newline is not stored in the string. Note that it may not work with very old compilers or with newer ones where
older standards such as C99 are chosen via compiler flags.

gets_s(string, MAX_STR_LEN + 1);

Another problem is that fgets() includes the newline character at the end of the string, which we usually don’t want.

There is unfortunately no POSIX standard function that safely reads a line of text without appending the newline character to the
string.

Addendum: The xt_fgetline() in libxtend (https://github.com/outpaddling/libxtend/) provides this functionality as conve-
niently as possible. The libxtend library adds many convenient low-level functions that some would say are missing from the
standard C libraries.

String output to stdout can be performed using puts(), which automatically adds a newline character:

// We can leave off the array size if we provide an initializer
// More on this in the arrays chapter
char commentary[] = "It’s a beautiful day!";

puts("Hello, world!");
puts(commentary);

If you don’t want a newline added automatically (as when you read a string with fgets(), which retains the newline read from
the stream), you can use fputs():

fputs("Hello, world!\n", stdout);
fputs(commentary, stdout);
putchar(’\n’); // fputs() didn’t add this

7.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What problems might occur when using gets() and why?

2. Write a C program that asks the user for their name, and displays a simple greeting. Be sure to test this and all programs
before submitting.

What is your name? Joe Piscopo
Hey, Joe Piscopo

https://github.com/outpaddling/libxtend/
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7.4 Numeric I/O

7.4.1 Output with printf()

Character, string, and numeric output can all be printed using the printf() library function. This function takes a format
string as the first argument, and a variable number of additional arguments. The format string must contain a place holder,
A.K.A. format specifier, for each argument after the format string. The specifier must match the data type of the argument.
Common specifiers are listed in Table 7.1. For more information, run man 3 printf. Running man printf will show the section
1 (Unix commands) printf. Section 3 contains man pages for standard library functions.

Type Number Format Format specifier
char, short, int printable character %c
string (character array) printable characters %s
char, short, int decimal %d
char, short, int octal %o
char, short, int hexadecimal %x
unsigned char, unsigned short,
unsigned int decimal %u

size_t (used for array subscripts) decimal %zu
float, double decimal %f
float, double scientific notation %e
float, double double or scientific notation %g
long double decimal %Lf

Table 7.1: Format specifiers for printf()

For numbers, printf() converts the internal binary number (unsigned integer, two’s complement, or floating point) to a string
of characters, which are then sent to the stream output buffer as when using putchar().

Values of type char and short are promoted to int when passed to a function. Hence they use the same format specifiers as
int. Likewise, float values are promoted to double, so we use "%f" for both. "%lf" is equivalent to "%f" for printf()
(though not for scanf(), described later). "%Lf" is used for long double.

// We deliberately use non-descriptive variable names here since
// these are meant to be arbitrary
char a;
short b;
int c;
float x;
double y;

printf("%d %d %d\n", a, b, c);
printf("%f %f\n", x, y);

Preceding any of the integer specifiers with "l" indicates a long and "ll" indicates a long long.

long a;
long long b;

printf("%ld %lx %lld %llx\n", a, a, b, b);
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Caution
The printf() function should not be used where a simpler function would suffice. I.e., to print a single character,
use putchar() and to print a simple string, use puts() or fputs(), unless you need to control the format of the
character or string output.
The printf() function scans the format string looking for format specifiers, which is wasteful if there are none. This
will make no noticeable difference in performance for many programs, but it may also add up to significant CPU time in
some cases.

printf("\n"); // Overkill
putchar(’\n’); // More efficient

printf("Hello, world!\n"); // Overkill
puts("Hello, world!"); // More efficient

printf("Please enter your name: "); // Overkill
fputs("Please enter your name: ", stdout); // More efficient

Caution
On some systems (mostly 32-bit systems), int and long are the same size. Hence, we can easily interchange "%d"
and "%ld" without consequences. However, the same code will not work properly on most 16-bit and 64-bit systems.
This is one reason it’s always a good idea to test your code on multiple operating systems, multiple CPU architectures,
and multiple compilers (e.g. clang and gcc).

Format specifiers can be preceded by an optional field width, and in the case of floating point, the number of decimal places.
Numbers are normally right-justified. We can indicate left-justification with a ’-’.

int a = 34;
double x = 91.234;

printf("%6d %10.2f\n", a, x); // Default right-justified
printf("%-6d %-10.2f\n", a, x); // Force left-justified

Output with spaces indicated by ’_’:

____34_____91.23
34____91.23_____

Types defined in stdint.h, such as int64_t and uint64_t need special handling. On 64-bit systems, int64_t is
equivalent to long. On 32-bit systems, it is equivalent to long long. The header inttypes.h defines constants that are
platform-sensitive for this purpose, and will translate to "ld" or "lld" as appropriate for the platform. We need to use string
constant concatenation for this:

int64_t big_num;

printf("big_num = %" PRId64 ".\n", big_num);

7.4.2 Input with scanf()

The scanf() function is the converse of printf(). It reads character input from stdin and converts it to the formats
indicated by the specifiers in the format string.

Understanding scanf() requires a quick preview to C argument passing and pointers. All arguments in C are pass by value,
which means the function receives a copy of the value of the argument.
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Note You may see the expression "call by value" in some texts. This doesn’t make sense, since arguments are not called.
Functions (methods, subprograms) are called and arguments are passed to them.

I.e., in the code below, printf() does not know the memory address of the variable x, and hence it is impossible for
printf() to modify its value. The value 5.1 is copied from x in the calling function to a local variable in the printf()
function.

double x = 5.1;

printf("x = %f\n", x);

The scanf() function cannot work this way. The whole purpose of scanf() is to modify the values of the arguments in the
calling function.

In some languages, we can define the arguments as pass by reference, which means the local variable in the called function is an
alias, or reference to the argument in the calling function. I.e. they are two names for the same memory address. Effectively this
means that the address of the argument is passed rather than the value. In C, there are no pass by reference arguments, but we
can achieve the same thing by explicitly passing the address of a variable by value, using the ’&’ (address of) operator:

int age;

fputs("How old are you? ", stdout);

// Pass the address of the age variable instead of the value
// so scanf() can change its content
scanf("%d", &age);

Note Some languages, such as Fortran, pass all arguments by reference. Fortran allows the programmer to tag certain
argument variables in a subprogram as read-only, to protect the calling subprogram from side-effects. Other languages, such
as C++, support both value and reference arguments.

The format specifiers for scanf(), listed in Table 7.2, are not quite the same as those for printf().

Type Number Format Format specifier
char printable character %c
char decimal %hhd
short decimal %hd
int decimal %d
int octal %o
int hexadecimal %x

int
hexadecimal if input begins with "0x",
octal if it begins with "0", otherwise
decimal

%i

long int decimal %ld
long long int decimal %lld
float decimal %f
double decimal %lf
long double decimal %Lf

Table 7.2: Format specifiers for scanf()

One of the reasons they differ from printf() specifiers is that we always pass addresses, rather than values to scanf().
Addresses are all the same size and format (unsigned integers, usually matching the CPU’s word size), regardless of what data
type they point to. E.g., the address of an int is the same as the address of a double. Hence, there are no promotions when
passing addresses to a function. The scanf() does need to know the size of format of the data at the address. We therefore
need different specifiers for char, short, and int in scanf(). Likewise for float and double.
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short a;
int b;
float x;
double y;

scanf("%hd %d %f %lf", &a, &b, &x, &y);

Note The scanf() function is very flexible about whitespace in the input. A space in the format string matches any number of
spaces, tabs, or newlines in the input. Hence, in the statement above, the user could enter numbers on the same line separated
by any number of spaces or tabs, as well as all or some of them on different lines.

Run man scanf for a full list of specifiers. There is no scanf Unix command, so no need for a section number here.

7.4.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why do char, short, and int all use the same placeholders in printf()?

2. Do "%d" and "%ld" mean the same thing?

3. Why does scanf() not use the same format specifiers for char, short, and int, like printf()?

4. Where do we find a complete list of format specifiers for printf() and scanf()?

5. Write a C program that asks the user for the length and width of a rectangle and prints the area and perimeter.

Please enter the length and width of the rectangle: 2 3
The area is 6.000000 and the perimeter is 10.000000.

7.5 Using fprintf() for Debugging

Debugging a program (locating errors when it is not behaving correctly) can be very frustrating and time-consuming. There are
many tools available to help debug programs. Unfortunately, many are not portable and most are difficult to use.

Caveman debugging, so called because it’s a primitive method, is often the easiest and most useful approach. It involves making
the program "talk", by printing intermediate results.

Debug output should be sent to stderr rather than stdout for two reasons:

• The stderr stream is by default unbuffered on most systems. This means that output is sent directly to the screen rather than
lingering in a memory buffer until the buffer is full. If the program crashes shortly after printing a message to stdout, that
message might die in the buffer, never making it to the screen, leading you to believe that the crash happened before the debug
print, when in fact it happened after.

We can correct for this by running fflush(stdout) immediately after printing debug messages to stdout, to flush
whatever is in the output buffer to the destination device. This is normally not necessary if we use stderr.

// Using stderr
fprintf(stderr, "Done with loop. sum = %d\n", sum);

// Using stdout
printf("Done with loop. sum = %d\n", sum);
fflush(stdout);
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• Sending debug output to stderr allows it to be separated from normal output using redirection. The normal output can then
be examined without interference.

# Debug output still goes to the screen if it is printed to stderr
shell-prompt: ./myprog > normal-output.txt

7.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is caveman debugging? Is it obsolete?

2. To where should we print debug output?

7.6 Addendum: Robust I/O

Every input statement, or any other statement that might fail, should be wrapped in a conditional, which we will introduce in
Chapter 9, to confirm that it succeeded, before proceeding to the next statement. Obviously, if an input or output statement fails,
we don’t want the program to simply continue as if nothing is wrong. For now, just note that the examples above, which do not
verify success, are not robust. Proper C input is briefly demonstrated by the code below:

// Sloppy code that ignores input errors
scanf("%d", &line_count);

// Robust use of input functions
// scanf() returns the number of items successfully converted
if ( scanf("%d", &line_count) != 1 )
{

fputs("Input error: Expected an integer.\n", stderr);
exit(EX_DATAERR);

}

// Another alternative is to keep asking until the user gets it right
while ( scanf("%d", &line_count) != 1 )
{

fputs("Input error: Expected an integer. Please try again.\n", stderr);
fpurge(stdin); // Discard the rest of the input line

}

The one exception to this rule is output to the terminal. Output functions like putchar(), puts(), and printf() do return
a value that indicates success or failure, but we normally don’t check it. We do always check when writing to a file, so that we
can detect disk full or other write errors. This is covered in Chapter 21.

7.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why should we always test for the success of input and output functions?

2. Are there any exceptions to the "always check" rule?
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Chapter 8

C Statements and Expressions

8.1 Simple Expressions

An expression in C is anything with a value.

C does not hide (abstract) the way data are handled by hardware. There are no abstract types built into the language. Everything
is either an integer, a floating point value, or just arbitrary bits. Boolean values are integers. 0 means false, non-zero means true.
All abstract data types are defined by the programmer using type definitions.

Other languages distinguish between assignment statements and expressions. I.e., the ’=’ operator can only appear after an lvalue
(variable or other mutable object on the LHS (left hand side) of a complete statement. Boolean expressions are distinct from
numeric expressions in some languages.

In C, there is no separation between operator types (Boolean, arithmetic, etc.) All operators and data types can be mixed in
the same expression. Expressions like the example below may look like nonsense, but the design philosophy of C is "trust the
programmer". The language does not forbid anything unless it simply cannot work.

int c = 5, d;

// Multiply c by 0 if c <= 1 or >= 10, assign 5 to d and add to c
// Java does not allow mixing Boolean expressions with integers this way
c = c * ((c > 1) && (c < 10)) + (d = 5);

Any expression followed by a ’;’ is a valid statement. Again, C does not enforce rules that do not need enforcement. This would
needlessly complicate the compiler.

3; // No purpose, but valid
x == 5; // No purpose, but valid
y = x + (z = 10); // Assigns 10 to z, then adds to x and assigns sum to y

8.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What abstract data types does C provide?

2. What is a statement in C?
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8.2 C Operators

Most operators are polymorphic (operate on multiple types, with possibly different results). Division (/) is the most obvious
example:

1 / 2 = 0
1.0 / 2.0 = 0.5

Integer and floating point addition are not the same thing either. Floating point is more complex and requires different machine
instructions.

Precedence refers to which of two adjacent operators is evaluated first, without regard for order. Multiplication has higher
precedence than addition, so it is always done before an adjacent addition:

// Multiplication comes first whether it is before or after
// addition because it has a higher precedence
y = x + a * 5; // Same as y = x + (a * 5);

// Same as y = a * 5 + x;

If two operators have the same precedence, associativity determines order of evaluation.

y = z + a - 5; // + and - have same precedence
// Left-to-right associativity means + happens first

8.2.1 Unary and Binary Operators

Unary operators have one operand.

y = -6; // Unary minus (negation)

Binary operators have two operands.

y = x - 6; // Binary minus (subtraction)

8.2.2 Math Operators

Math operators follow algebra and most other languages. (Actually, most modern languages follow C.) Table 8.1 outlines the C
math operators.

Operator Operation Precedence Associativity / Order of
Operation

() Grouping 1 (highest) Inside to outside
- Negation 2 Right to left
++ Increment 2 Nearest to farthest
-- Decrement 2 Nearest to farthest
* Multiplication 3 Left to right
/ Division 3 Left to right
% Mod (remainder) 3 Left to right
+ Addition 4 Left to right
- Subtraction 4 Left to right
[operator]= (=, +=, -=, etc.) Assignment 6 Right to left

Table 8.1: Basic Math Operators in C

The ’/’ operator produces different results for integers than for floating point. The ’+’, ’-’, and ’*’ operators are also polymorphic,
i.e. they do unsigned binary, two’s complement, or floating point operations, depending on the operand types. However, the
results are generally the same value regardless of type for operators other than division.
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y = 1 / 2; // 0
y = 1.0 / 2.0; // 0.5
y = 1 / 2.0; // 0.5

The remainder (%) operator works only for integers. There is no remainder in real division.

y = 3 % 5; // 3
y = 3.0 % 5; // Nonsensical

Instructor: Make up some mixed expressions using math operators including ’/’ and verbally quiz students on the value.

The ++ and -- operators add or subtract 1 from any integer value. When embedded in an expression, it matters whether they
come before or after the variable.

int c = 1, d;

// Assume the following statements are independent, not sequential
++c; // c = 2
c++; // c = 2

d = ++c; // d = 2, c = 2 (pre-increment)
d = c++; // d = 1, c = 2 (post-increment)

8.2.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is 7 / 2?

2. What is 7 % 2?

3. What is 7.0 / 2.0?

4. What are the values of a, b, c and d after the following code segment?

int a, b, c, d;

a = 5;
b = 7;
c = a++;
d = ++b;

8.3 Mixed Expressions

The ability to freely mix data types is both a convenience and a curse. It saves some typing, but makes programs harder to predict,
reduces performance, and can lead to serious errors (incorrect output) when used incorrectly.

When values of two different data types are operands to the same operator, the "lower" type is promoted to the "higher" type.
"Higher" generally corresponds to more bits or more range, as shown in Table 8.2.

Implicit promotions occur in most modern languages, such as C, C++, Java, Fortran, etc.

The table does not show short or char because they are always promoted to int when used with math operators, even when
not mixing. They are also promoted when passed to a function.

Example: Tracing a mixed expression evaluation:
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Type Rank
double complex 1 (highest)
float complex 2
double 3
float 4
unsigned long long 5
long long 6
unsigned long 7
long 8
unsigned int 9
int 10

Table 8.2: Data Type Ranks

int a = 5, b = 1;
long c = 10;
float x = 1.2f;
double y = 2.0;

a = a / c + 4 * x - b / y;

What actually happens while evaluating this expression:

1. 5 in a (int two’s comp) promoted to long 5L two’s comp via sign-extension

2. a / c = 0L (long two’s comp)

3. 4 (int two’s comp) promoted to 4.0F (32-bit IEEE)

4. 4.0F * x = 4.8F

5. int 1 (two’s comp) in b promoted to 1.0 (64-bit IEEE)

6. 1.0 / 2.0 = 0.5

7. 0 (two’s comp) promoted to 0.0F (32-bit IEEE)

8. 0.0f + 4.8f = 4.8F

9. 4.8F (32-bit IEEE) promoted to 4.8 (64-bit IEEE)

10. 4.8 - 0.5 = 4.3

11. 4.3 (64-bit IEEE) truncated and demoted to int 4 (two’s comp)

12. 4 assigned to a

Half of the steps above are data conversions. Only half perform useful work.

In addition, the integer division results in 0. This is more likely an oversight on the part of the programmer than intentional when
expressions contain floating point.

Converting between signed and unsigned integers of the same size has no cost. The bits are not changed. Only the interpretation
of the result is in question. Different machine instructions may be generated for signed and unsigned operations, but no additional
instructions to convert the values will be inserted.
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8.3.1 Explicit Conversions: Casts

We can force a conversion if we don’t want the default operation to occur by stating the type in () before the value:

a = (double)a / c + 4 * x - b / y;

// Same as

a = (double)a / (double)c + 4 * x - b / y;

// This does not help
a = (double)(a / c) + 4 * x - b / y;

8.3.2 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a promotion and when does it occur?

2. What is a demotion and when does it occur?

3. When are char and short values promoted?

4. List all the promotions, demotions, and mathematical operations that occur when evaluating the following expression.
Indicate the data type of each intermediate result using standard C constants.

char a = 2, b = 6;
long c = 4, d = 10;
double x = 9.0, y = 3.0;
float z;

z = b / a * c / d + x * y;

5. Alter the expression above so that no integer divisions occur.

8.4 Bitwise Operators

Operator Operation Precedence Associativity / Order of
Operation

~ Complement (invert all bits) 2 (same as unary -) Left to right
<< Shift left 5 (below + and -) Left to right
>> Shift right 5 (below + and -) Left to right
& Bitwise AND 6 Left to right
ˆ Bitwise XOR 6 Left to right
| Bitwise OR 6 Left to right
[operator]= (=, +=, -=, etc.) Assignment 7 Right to left

Table 8.3: Bitwise Operators in C

char a = 0x0f, // 00001111_2
b,
c = 0x80; // 10000000_2

unsigned char d = 0x80;
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b = a & 0x18; // 00011000 & 00001111 = 00001000 = 0x08
b = a | 0x18; // 00011000 | 00001111 = 00011111 = 0x1f
b = a ^ 0x18; // 00011000 ^ 00001111 = 00010111 = 0x17
b = ~a; // 00001111’ = 11110000 = 0xf0
b = a ^ -1; // 00001111 ^ 11111111 = 0xf0

b = a << 2; // 00001111 << 2 = 00111100 = 0x3c
b = a >> 2; // 00001111 >> 2 = 00000011 = 0x03

b = c >> 4; // 10000000 >> 4 = 11111000 = 0xf8 arithmetic shift
b = d >> 4; // 10000000 >> 4 = 00001000 = 0x08 logical shift

Shown vertically, so we can see how the bits align:

0f 00001111 00001111 00001111
& 18 00011000 | 00011000 ^ 00011000
----------------- -------- --------

08 00001000 00011111 00010111

An series of arithmetic shifts starting with 10000000.

10000000 = 01111111 + 1 = -10000000 = -128 // 10000000
11000000 = 00111111 + 1 = -01000000 = -64 // 10000000 >> 1
11100000 = 00011111 + 1 = -00100000 = -32 // 10000000 >> 2

With bitwise AND, OR, and XOR, we can think of one operand as the value and the other as the mask. Bits that are 0 in a mask
are reset, or cleared in the result of an AND, while other bits in the value are unchanged. Bits that are 1 in the mask are set in
the result of an OR, while other bits are unchanged. Bits that are 1 in the mask are inverted in the result of an XOR, while other
bits are unchanged.

unsigned char a = 0x1c, b; // 0001 1100

// Clear the lowest 4 bits in a and assign the result to b
b = a & 0xf0 // 0001 0000 = 0x10

// Set bits 0 and 1 in a and assign the result to b
b = a | 0x03; // 0001 1111 = 0x1f

// Invert the upper 4 bits in a, and assign the result to b
b = a ^ 0xf0; // 1110 1100 = 0xdc

If the value being shifted is a signed integer, the >> operator performs an arithmetic shift, preserving the sign bit. This divides a
two’s complement value by 2, e.g. 1000 = -8, 1100 = -4.

If the value is an unsigned integer, the >> operator performs a logical shift (leftmost bit cleared/reset to 0). This divides an
unsigned value by 2, but does not work on two’s complement.

Bit shifts require only 1 clock cycle on most CPUs. Multiplication with ’*’ and division with ’/’ may require many clock cycles,
since they perform repeated addition or subtraction. If multiplying by a power of 2 or a short sum of powers of 2, using shift can
speed up the program.

y = y * 32; // Several clock cycles for repeated addition
y = y << 5; // 1 clock cycle

8.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.
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1. What is the hexadecimal value of c after the following? Try to do it in your head or on paper first, then check by writing a
2-line program that prints c.

unsigned char c = 0xf0 >> 3;

2. What is the hexadecimal value of c after the following?

char c = 0xf0 >> 3;

3. What is the hexadecimal value of c after the following?

unsigned char c = 0x1c & 0xf2;

4. What is the hexadecimal value of c after the following?

unsigned char c = 0xf0 ^ -1;

5. What is the hexadecimal value of c after the following?

unsigned char c = 0xfc | 7;

6. What operator and mask would you use to clear bits 2 and 3 of a char?

7. What operator and mask would you use to set bits 0 and 7 of a char?

8. What will happen if you accidentally use a logical operator such as || in place of a bitwise operator such as |?

9. Write a C program that inputs an integer and prints the value times 2, the value times 4, and the value times 8, using the
most efficient method possible.

Please enter an integer: -2
-2 * 2 = -4
-2 * 4 = -8
-2 * 8 = -16

8.5 Addendum: More Performance Tricks

8.5.1 Polynomial Factoring

Multiplication is far more expensive than addition. We can sometimes alter code to reduce the number of multiplication opera-
tions, such as by factoring polynomials:

// 6 multiplications, some of which are redundant
y = 3.0 * x * x * x + 2.0 * x * x + 1.0 * x + 5.0;

// Only 4 multiplications after factoring out x
y = x * (3.0 * x * x + 2.0 * x + 1.0) + 5.0;

// Only 3 multiplications after factoring out another x
y = x * (x * (3.0 * x + 2.0) + 1.0) + 5.0;
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8.5.2 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Rewrite the following expression to make it compute faster:

double x, y;
int a;

y = 4.5 * x * x * x - 5.3 * x * x + a * 32;
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Chapter 9

Decisions with If and Switch

9.1 Program Flow

Two kinds of statements in C:

• Expressions followed by a semicolons.

• Flow control. Sometimes called "control flow", which doesn’t really make sense. Our TVs don’t have "control volume", they
have "volume control". Cars and motorcycles don’t have "control throttle", they have "throttle control".

Flow control statements alter the normal top-to-bottom flow of statements, usually conditionally, based on some Boolean
expression.

9.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the two kinds of statements in a C program and what do they do?

9.2 Boolean Expressions

9.2.1 Boolean Type

A Boolean expression is an algebraic expression with a value of true or false. The primary Boolean operators AND, OR, and
NOT, behave much like mathematical operators -, +, and unary - (negation).

Addendum: Until the C99 standard, C had no Boolean data type. In C99 and later, _Bool is a keyword, though it is not used
directly. We include stdbool.h and use the bool type, along with the constants true and false.

#include <stdio.h>
#include <sysexits.h>
#include <stdbool.h>

int main()

{
bool is_cloudy = true;
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...

return EX_OK;
}

The bool type is actually an integer, typically equivalent to char. A value of 0 is interpreted as false, and any other value as
true. In fact, any integer type can be used in place of bool in flow control statements.

9.2.2 Relations

Most Boolean expressions are formed from relations, comparisons of non-Boolean values, using the operators in Table 9.1.

Operator Relation
> Greater than
>= Greater than or equal
< Less than
<= Less than or equal
== Equal
!= Not equal

Table 9.1: Relational Operators

9.2.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a Boolean expression?

2. What are the primary Boolean operators?

3. How are Boolean values treated in C?

4. How are most Boolean expressions formed?

9.3 The if-else Statement

9.3.1 Statement Syntax

The if-else statement is used to conditionally execute one or more statements.

if ( Boolean-expression )
statement1;

else
statement2;

The else is optional.

if ( scanf("%d", &list_size) != 1 )
fputs("Error reading list_size, expected positive integer.\n", stderr);
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Caution
Never use == or != with floating point values. Round-off error may cause variables that are equal in theory to be
unequal in reality. Other relational operators may be unreliable due to round-off error as well. Make sure you understand
your data and the consequences of its inaccuracy to your code.

#include <stdio.h>
#include <sysexits.h>

int main(int argc,char *argv[])

{
double x = 1.0 / 10.0;

printf("%0.17f\n", x);
if ( x == 0.1 )

puts("x is 0.1");

return EX_OK;
}

Output:

0.10000000000000001

Caution
A very common mistake in C is using = where == was intended. This will assign a value, rather than compare. If the
value assigned is 0, the expression will be interpreted as false. If it is non-zero, then the expression is seen as true.

if ( aardvarks = 1 ) // Assigned 1 to aardvarks, always "true"
{

...
}

Use of assignments can be useful, however:

int ch;

// If not end-of-file, process new character in ch
if ( (ch = getchar()) != EOF )
{

...
}

9.3.2 Compound Statements

To group statements under an if or else, we use a compound statement, which can actually be used anywhere.

#include <stdio.h>
#include <sysexits.h>

int main()

{
{

// A useless compound statement
puts("Hello, world!");

}
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return EX_OK;
}

if ( Boolean-expression )
{

statement1;
statement2;

}
else
{

statement3;
statement4;

}

Statements under an if or else should be consistently indented. The lab manual covers such coding standards in detail.

Example 9.1 Example of if-else

/* FreeBSD Compile: cc -Wall prog -lm */
/* Linux Compile: cc -Wall prog -lm */
/* SunOS Compile: cc prog -lm */
/* SCO_SV Compile: cc -v prog -lm */

#include <stdio.h> /* Input and output */
#include <sysexits.h>
#include <math.h> /* Math functions - sqrt() */

int main()

{
double a,b,c,root1,root2,discriminant,sq,two_a;

printf("Enter coefficients A, B, and C: ");
if ( scanf("%lf %lf %lf",&a,&b,&c) == 3 )
{

discriminant = b*b - 4.0*a*c;
if ( discriminant >= 0.0 )
{

/* 2*a and sqrt(discriminant) used twice */
/* so we pre-compute and use variables */
two_a = 2.0 * a;
sq = sqrt(discriminant);

/* Find roots */
root1 = (-b + sq) / two_a;
root2 = (-b - sq) / two_a;
printf("Roots are %f and %f.\n",root1,root2);

}
else

printf("Sorry, no real roots.\n");

return EX_OK;
}

fputs("Error: Please enter the 3 coefficients separated by whitespace.\n",
stderr);

return EX_DATAERR;
}
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Think you got it? Prove it! Try doing it yourself without looking at the text.

9.3.3 Building Bigger Boolean Expressions

Boolean algebraic expressions can be constructed using the Boolean operators in Table 9.2.

C Operator Boolean Operation
&& AND
|| OR
! NOT

Table 9.2: Boolean Operators

if ( (artichokes == 0) && (artichokes_sold >= 1) )
puts("Time to order more artichokes.");

else
puts("We’re good on artichokes for now.");

9.3.4 De Morgan’s Rules

Boolean NOT can be distributed and factored out. We must toggle AND and OR in the process:

! (A && B) is the same as !A || !B
! (A || B) is the same is !A && !B

9.3.5 Nested if Statements

When nesting if-else statements, be very careful about indentation to avoid making the code misleading. Using curly braces
is often a good idea for readability even if they are not necessary.

// Sloppy and misleading
if ( artichokes == 0 )

if ( artichokes_sold >= 1 )
printf("Time to order more artichokes.\n");

else
printf("Artichokes aren’t selling.\n");

else
printf("We’re OK on the artichokes for now.\n");

if ( artichokes == 0 )
if ( artichokes_sold >= 1 )

printf("Time to order more artichokes.\n");
else

printf("Artichokes aren’t selling.\n");
else

printf("We’re OK on the artichokes for now.\n");

if ( artichokes == 0 )
{

if ( artichokes_sold >= 1 )
printf("Time to order more artichokes.\n");

else
printf("Artichokes aren’t selling.\n");

}
else

printf("We’re OK on the artichokes for now.\n");
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9.3.6 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What do we need to watch out for when using floating point in relational expressions?

2. Should we use == or = in an if expression?

3. What is a compound statement and where can we use one?

4. How should we format if-else blocks?

5. Write a C code segment that checks to see of the value of variable count is between 0 and MAX_COUNT (inclusive), and
if not, prints an error message stating that it’s out of range.

6. Write a C code segment that checks to see if the variable temperature is above MAX_TEMPERATURE. It should then
check another variable hot_time, print a warning if it is greater than WARNING_TIME minutes, and call the function
shutdown() if it is greater than CRITICAL_TIME.

7. Simplify the following if statement using De Morgan’s rule:

if ( ! ((a < 10) || (a > 20)) )
statement;

9.4 Switch

A switch statement can replace a series of if-else statements, but only for integral (discrete) data types, i.e. not floating
point.

if ( c == 1 )
statement1;

else if ( c == 2 )
statement2;

else
statement3;

switch(c)
{

case 1:
statement1;
break;

case 2:
statement2;
break;

default:
statement3;
break;

}

The break statements are not required, but usually necessary. If we omit the break after statement1, then both statement1
and statement2 will be executed when c == 1. This is occasionally useful, but would not be equivalent to the if-else
above.

C compilers will attempt to translate a switch statement to a jump table at the machine code level. Rather than sequentially
compare the switch variable (c above) to each case value, the addresses of each statement are stored in an array, and the switch
variable (or some hash of the switch variable) is used as a subscript to that array. This makes jumping to any case instantaneous
rather than a linear search through the case values.
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9.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write a C code segment that compares an integer variable color to the constants RED, GREEN, and BLUE, and prints a
string matching the color in each case.

9.5 The Conditional Operator

The conditional operator is essentially an if-else statement implemented as an expression.

if ( a < 0 )
b = -a;

else
b = a;

b = a < 0 ? -a : a;

9.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write a C statement that assigns z the minimum of x and y, using only a conditional operator.

9.6 Performance

9.6.1 Programmer Psychology

Studies have shown that 60% of if conditions are false. This is due to a human tendency to think in terms of the less likely
alternative. "If there’s a tornado" vs "If there’s not a tornado". Compilers optimize machine code so that the else clause is
faster in order to take advantage of this statistic. Because of the way machine/assembly language works, one clause or the other
must use an extra jump instruction:

if ( c == 1 )
a = 5;

else
a = 7;

// The if clause is 2 instructions after the bne
// The else clause is only 1
bne c, 1, else
li a, 5
jmp done

else: li a, 7
done:
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9.6.2 Minimizing Boolean Expression Evaluation

Boolean operators are evaluated left to right. If the expression left of && is false, then the expression on the right is irrelevant and
will not be evaluated. Likewise, if the expression left of an || is true, then the expression on the right is not evaluated.

if ( (n >= MIN) && (n <= MAX) )
{

...
}

If n < MIN, then the relation n <= MAX will not be evaluated. If it is more likely that n is greater than MAX than it is to be
less than MIN, we should rearrange the condition above to maximize the likelihood that the second relation is unnecessary.

// Put the less likely relation first when using AND
if ( (n <= MAX) && (n >= MIN) )
{

...
}

Likewise, when using OR, we want the more likely relation first.

9.6.3 Using Data Types to Reduce Boolean Expressions

int n;

if ( (n >= 0) && (n <= MAX) )
{

...
}

An unsigned value is always greater than 0, so if we cast n to unsigned, then (n >= 0) becomes useless.

int n;

// n may be less than 0, but we cast to unsigned to eliminate a compare
if ( (unsigned int)n <= MAX )
{

...
}

This works because negative numbers in two’s complement become very large positive numbers when cast to unsigned, beyond
the range of the two’s complement system. E.g., -1 is all 1111...11, the largest possible unsigned value, well beyond 0111...11,
the largest signed value. The constant MAX cannot be greater than the largest possible signed value, so all negative numbers cast
to unsigned will be greater than MAX.

This is one of many clever tricks we can use to improve performance. We should consider, however, whether the benefit to
performance outweighs the cost to readability.

If you use a trick like this, it must be clearly documented in a comment.

9.6.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write an optimal if-else statement that prints "Just another day in the cheese state." if the temperature is below 90 F
(32 C) in Milwaukee, or "It’s a hot one in Wisconsin." if it isn’t. Explain your code in a comment.

2. Write an optimal if-else statement that checks the temperature in Milwaukee in January, and prints "Better bring the
beer in." if the temperature is below 30 F (-1 C) or above 50 F (10 C), and "It’s OK to leave the beer outside" otherwise.
Explain your code in a comment.
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Chapter 10

Repetition: Loops

10.1 Loops and Performance

Loops should be avoided as much as possible.

Addendum: 1990s Pentium: 20 million instructions per second. 2023 Intel/AMD processors: Billions of instructions per second.

10.1.1 Loops and Performance

The Execution Path

Sequence of instructions executed. Different from sequence in the program file due to flow control.

Two ways to speed up a program:

• Shorten the execution path (run fewer machine instructions)

– Eliminate loops or shorten loops by using more efficient algorithms, e.g. binary search vs linear search.
Watch out for hidden loops in functions that must use iterative methods, like sin(), sqrt(), etc. Avoid string processing.
Strings are arrays of characters (in all languages, not just C). Replace strings with scalar integers if possible.

– Reduce the amount of code inside the loop. Many existing programs have code inside loops that can simply be moved out.

– Simplify expressions inside the loops. This reduces the amount of machine code generated.

• Replace machine instructions with faster instructions E.g. use shift instead of multiply:

c *= 32; // Multiplication is repeated addition, takes many clock cycles
c <<= 5; // Shift takes 1 clock cycle

10.1.2 Performance Measurement

Unix time command measures three main statistics:

• User time: Time a process spends using the CPU

• System time: Time the kernel spends using the CPU on behalf of a process

• Real time or wall time: Time elapsed on the clock while a process is running.
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# Example
shell-prompt: time ./myprog < input.txt > output.txt

The top command monitors processes as they run and displays periodic updates on their resource use.

Figure 10.1: The top Command

10.1.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the execution path?

2. What are the two general ways to speed up a program? ( 5 to 10 words each )

3. How can we measure the total run time of a Unix process?

4. How can we monitor resource use while a process is running?

10.2 The Universal Loop: while

While is the only loops we need. It can do anything that other loops do.
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#include <stdio.h>
#include <sysexits.h>

int main()
{

int c;

/* Initialize loop variable (prime the loop) */
c = 1;

/* Continue until c == 11 */
while ( c <= 10 )
{

// Body
printf("%d squared is %d\n", c, c * c);

// Housekeeping
++c;

}

return EX_OK;
}

Caution
An infinite loop occurs when a loops never terminates, such as if we omit the ++c above. Infinite loops have many
possible causes.

Checking the loop condition and updating a loop variable are overhead costs, i.e. they take time, but do not compute any results.
Loops can be unrolled, which means turned into a sequence of statement blocks instead of one block inside a loop. This eliminates
loop overhead at the cost of more machine code. It is generally only desirable where performance is critical. The clang and gcc
compilers will automatically unroll loops at the machine code level if you specify -funroll-loops or related options.

Code in loops should be indented consistently, as with conditionals. See the coding standards in the lab manual for details.

Caution
Since Boolean expressions are integers, and 0 means false, C programmers sometimes do things like the following:

int c;

// Count down from 10 to 1
c = 10;
while ( c )
{

printf("%d\n", c);
--c;

}

This will work, but there is no advantage to it, and it forces the reader to examine more code in order to understand
what the while condition is doing. It’s better to make your code easy to read than show off how clever you are as a C
programmer. The code below makes it clear at a glance that the variable c is a number being compared to 0.

while ( c > 0 )
{

...
}
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10.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What often causes an infinite loop?

2. What is loop overhead? How can we eliminate it, and at what cost.

10.3 The do-while Loop

The do-while loop is like a while loop, but checks the condition at the end instead of the beginning.

This means that a do-while always iterates at least once. It eliminates the need to prime the loop (force the condition to be
true).

c = 0; // Prime the loop
while ( c < 10 )
{

++c;
}

Note The term "prime" is borrowed from old carburetor-based cars, which were often difficult to start. People would prime the
engine by spraying a flammable liquid into the carburetor before turning the engine over.

Note
A do-while is slightly faster than a while, since it eliminates an unconditional jump at the machine code level. A while
checks the condition at the beginning, and must unconditionally jump back there from the end:

// Hypothetical while loop assembly language
while: beq x, 10, done // Jump out of loop if c == 10

// Loop body

jmp while // Unconditional jump overhead
done:

// Hypothetical do-while loop assembly language
// No unconditional jump overhead

do: // Loop body

blt c, 10, do // Jump back to beginning if c < 10

Smart compilers may in some cases convert a while loop to a do-while if it is clear that it will iterate at least once anyway.
Don’t count it this, though. Write it as a do-while if possible.

10.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How does the behavior of a do-while loop differ from that of a while?

2. Do while and do-while loops exhibit the same performance? Why or why not?
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10.4 The for Loop

A for loop in many languages is a more limited kind of loop that iterates through integer or other enumerable values. Not so in
C. In C, the for loop is actually a while loop with the initializer, condition, and housekeeping all collected into one place for
easy reading. This makes the code more cohesive and makes it harder to forget to include the housekeeping (which is very easy
to do with a while loop).

c = 0; // Initialization
while ( c < 10 ) // Condition
{

// Loop body

++c; // Housekeeping
}

// Initialization, condition, housekeeping all together
// Another example of cohesive code
for (c = 0; c < 10; ++c)
{

// Loop body
}

Note
Only the condition is required in a for loop. Either or both of the initialization and housekeeping can be omitted.

c = 0; // Initialization
for ( ; c < 10; ) // Condition
{

// Loop body

++c; // Housekeeping
}
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Caution
As stated earlier, we should never compare floating point values with == or !=, and we must use extreme caution when
comparing them with other relational operators.

double x;

for (x = 0.0; x != 1.0; x += 0.1)
{

printf("%f\n", x);
}

0.0000000000000000
0.1000000000000000
0.2000000000000000
0.3000000000000000
0.4000000000000000
0.5000000000000000
0.6000000000000000
0.7000000000000000
0.7999999999999999
0.8999999999999999
0.9999999999999999
1.0999999999999999
1.2000000000000000
...
And on forever...

Using x < 1.0 does not completely solve the problem, either. It will still result in one extra iteration.
One solution is to use integers instead of floating point wherever possible. If we must use floating point, we should
always allow a tolerance when doing comparisons.

double x, tolerance;

// Stop when x is very close to 1.0 to accommodate round-off
tolerance = 0.05;
for (x = 0.0; ABS(x - 1.0) > tolerance; x += 0.1)
{

printf("%f\n", x);
}

10.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How does a for loop differ from a while loop?

2. How do direct floating point comparisons affect loops? How do we solve this problem?

3. Write a C program that prints the square root of every integer value from 1 to 100.

10.5 Nested Loops

// Statements here are executed once.
// These are the least important to optimize
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for (row = 0; row < rows; ++row)
{

// Statements here executed "rows" times
// More important to optimize

for (col = 0; col < cols; ++col)
{

// Statements here executed rows * cols times
// Most important to optimize

}
}

10.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. When optimizing a program with nested loops, where should we focus our efforts?
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Chapter 11

Functions

11.1 Subprograms for Modularity

Turn one big job into a bunch of little jobs and knock them off one at a time, in a logical order.

Top-down design for cleaning the kitchen:

• Do the floor last, since it may get dirty while we clean things above it.

• Clean the stove

• Clean the table

• Wash the dishes

• Clean the sink

Top-down design for sorting a file:

• Read the file into an array (sorting directly on disk would be very inefficient, since disk access takes roughly 100,000 to
1,000,000 times as long as memory).

• Sort the list in memory using the most efficient available sorting algorithm. E.g. for selection sort (not the most efficient, but
simple for the sake of this example):

– Find the smallest element in the list

– Swap the smallest element with the first

– Repeat the above steps for the remaining elements

– Continue repeating until only one element remains

• Output the sorted list.

11.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write a top-down design for identifying lines in a file that contain a string provided by the user (i.e. how the grep command
works).
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11.2 Reusability and Encapsulation

Some subprograms are very esoteric and will never be used in another program. This is typical of higher level functions, e.g.
those that are called directly by the main program.

Other subprograms may be more generally reusable. This is more likely for lower-level subprograms, especially leaf subpro-
grams (subprograms that do not call any other subprograms).

Subprograms that might be useful in other programs should be eventually moved to a library, a collection of precompiled
subprograms that are directly accessible to any program via the linker. Building libraries is covered in Chapter 20.

Note In my 35+ years of C programming, about 2/3 of all the functions I have written have gone into libraries. I often develop
and test functions as part of a program, making them as general as possible with the intent of sharing them with other programs
eventually, and once they are fully tested, move them to a library such as libxtend (https://github.com/outpaddling/libxtend) or
biolibc (https://github.com/auerlab/biolibc).

Encapsulation is the practice of bundling data types with the operations that can be performed on the data, to form a class.
Conceptually, the integer set and the operations +, -, *, and / form a class. We can (and should) try to encapsulate most of our
derived data types as well. This is the focus of object oriented design.

In implementing an object oriented design, we restrict access to data to a group of member functions, i.e. functions that are
considered part of the class. This can be done in any language with a little self-discipline, but object oriented languages such as
Java and C++ provide syntactic support.

Object-oriented programming in C is covered in Chapter 18.

For now, each time you write a new function, think about whether it could go in a library and whether it should be a member of
a class. Classes are often implemented as libraries.

11.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How can we avoid duplicating the effort of writing subprograms that are useful to more than one application?

2. What is encapsulation?

11.3 Writing Functions

Subprograms go by many names, such as procedures in Pascal and subroutines in Fortran, both of which are subprograms that
do not return a value. The writeln procedure is a Pascal built-in procedure for writing a line of output to the terminal.

writeln(’Hello, world!’);

function is a subprogram that returns a value. A call to a function is embedded in an expression. An example would be the
sin() function:

y = x * x + sin(theta) - 4.0;

All subprograms in C are called functions, because they all have a return type. Functions that don’t return a value have the special
return type void, but are still called functions. In C, we can choose to ignore the return type of a function and treat it like a
Pascal Procedure or Fortran subroutine. We should almost never ignore the return value of a function, but one case where it’s OK
is when sending output to the terminal: E.g. the printf() function returns an int, the number of items successfully written.

https://github.com/outpaddling/libxtend
https://github.com/auerlab/biolibc
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// printf() prototype:
int printf(char *format, ...);

printf("Average = %f\n", average);

Functions in C are both declared and defined. A definition includes the body (executable statements) of the function, while the
declaration defines only the interface (the arguments and return value types).

11.3.1 Function Definitions

We will focus on the ANSI / ISO standard for function definitions. The older K & R standard is still generally supported, but
almost never used. K & R (Kernighan and Ritchie) is the old de facto C standard predating ANSI and ISO standards.

Every function should have a block comment above describing what the function does, and optionally, its modification history.
Then comes the function header defining the return type and formal argument variables, and finally the body.

/***************************************************************************
* Description:

*
* History:

* Date Name Modification

* 2023-03-13 Joe C. Unix Begin

***************************************************************************/

return-type name(formal argument variables)

{
body

return expression;
}

/***************************************************************************
* Description:

* Compute and return the square of an integer.

* Detecting overflow is left to the user to maximize speed here.

*
* History:

* Date Name Modification

* 2023-03-13 Joe C. Unix Begin

***************************************************************************/

int square(int n)

{
return n * n;

}

The return type must be a scalar (dimensionless, single-value) type. C functions cannot return aggregate types (which contain
multiple values) such as arrays or structures. They can, however, return pointers to (addresses of) aggregate types. This ensures
efficiency, since returning an aggregate type would involve a loop copying potentially large amounts of data at the machine code
level.

Example 11.1 Function example
Below is a simple example of a C function. Note that the function is defined before is it called in main().

#include <stdio.h>
#include <sysexits.h>
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// Define the factorial function before calling it in main

double factorial(int n)

{
double f = 1;

while ( n > 1 )
f *= n--;

return f;
}

int main()

{
int c;

for (c = 0; c < 10; ++c)
printf("%d! = %f\n", c, factorial(c));

return EX_OK;
}

A prototype is a C function declaration that defines the return value and argument list of a function. This is useful when a function
cannot be defined before it is called, or when it is defined in a different source file. Prototypes are usually placed in header files,
which can then be included in any source file. A prototype is identical to the header of a function definition, except that it does
not need to include the variable names.

C compilers are one-pass compilers, meaning that they only read the source file once. The compiler must see either a declaration
or a definition of a function before it sees the first call to that function, so it knows the interface.

The old K & R function declarations did not include an argument list. These should not be used anymore, since all modern
compilers support prototypes.

Note Run more /usr/include/stdio.h and scroll down to see the prototypes for standard stream functions such as getchar(),
putchar(), printf(), scanf(), etc.

Example 11.2 Function example
Below is the same example using a prototype to allow the factorial function to be defined later.

#include <stdio.h>
#include <sysexits.h>

// Declare the factorial function before calling it in main
// A declaration that defines the argument list is called a prototype
// Variable names are optional

double factorial(int);

int main()

{
int c;

for (c = 0; c < 10; ++c)
printf("%d! = %f\n", c, factorial(c));
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return EX_OK;
}

double factorial(int n)

{
double f = 1;

while ( n > 1 )
f *= n--;

return f;
}

Note
Did it occur to you that the examples above are terribly inefficient? After computing N!, where N is any integer from 1 to 9, the
program recomputes N! in the process of computing (N+1)!.
It would be more efficient not to use a function, but to compute N! in main() by simply multiplying the previous value by N.
An efficient factorial function requires more knowledge of C and is presented in Chapter 15.

11.3.2 Function Calls

The value of an expression in a function call is copied to the formal argument variable in the function. Table 11.1 shows how the
variable c in main() and the variable n in the factorial function might, hypothetically, be organized in memory.

Memory address Variable Value
1000 c (main) 2
1004 n (factorial) 2

Table 11.1: Memory Map

11.3.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why do we need prototypes in C?

2. Where are most prototypes found? Why?

3. Write a C program that prints a 10 x 10 multiplication table. Use a function called prod() that returns the product of the
two arguments. Place the function definition after main() and a prototype before.

1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70



C/Unix Programmer’s Guide Lecture Outline and Addendum 113 / 255

8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

11.4 Local Variables

Variables defined inside a function only exist in that function. I.e., their scope is limited to that function. A variable with the
same name defined elsewhere is a different variable.

/*
* n and f are in scope only from where they are defined to the

* end of the factorial function.

*/

unsigned long factorial(unsigned long n)

{
unsigned long f;

for (f = 1; n > 1; --n)
f *= n;

return f;
}

/*
* The variable n below is not the same variable as n in factorial()

*/

int square(int n)

{
return n * n;

}

11.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What does scope mean and of what is it a property?

2. Can a C program have multiple variables with the same name? Why or why not?

11.5 Arguments

11.5.1 Privacy

Variables in a function that receive arguments are called formal argument variables.

The only difference between a formal argument variable and a local variable is that the formal argument is initialized to a value
received from the caller. Otherwise, formal argument variables are just like other local variables.
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unsigned long factorial(unsigned long n)

{
// c here is useless. We could just use n in its place, since
// they are equivalent.
unsigned long c, f;

for (c = n, f = 1; c > 1; --c)
f *= c;

return f;
}

11.5.2 Argument Passing

All C arguments are passed by value, meaning that the value of the argument in the caller is copied to the formal argument
variable in the called function.

#include <stdio.h>
#include <sysexits.h>

unsigned power(unsigned base, unsigned exponent)

{
unsigned p;

for (p = 1; exponent >= 1; --exponent)
p *= base;

return p;
}

int main()

{
unsigned exponent;

for (exponent = 1; exponent <= 10; ++exponent)
printf("2^%u = %u\n", exponent, power(2, exponent));

return EX_OK;
}

In the program above, there are two separate variables called exponent, one in main() and one in power(). The variables
base and exponent in power() receive copies of the values 2 and exponent in main(), as shown in Table 11.2.

Address Variable
1000 exponent (main)
1004 base
1008 exponent (power)

Table 11.2: Argument Passing

Some languages, such as C++, support pass by reference, where the formal argument variable in the subprogram becomes an
alias for (has the same memory address as) the argument passed by the caller. This can lead to side effects, where a variable is
accidentally modified by a subprogram that was called. Other times, we want a subprogram to modify variables in the caller, as
with scanf() or a swap() function.
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Since C does not support pass by reference arguments, we must explicitly pass the address of a variable we want modified by a
function:

// Passing the address of a variable by value simulates passing the
// variable by reference
scanf("%d %d", &a, &b);
swap(&a, &b);

Passing arguments this way is covered in Chapter 14.

Caution The terms "call by value" and "call by reference" are often used in place of "pass by value" and "pass by
reference". They don’t really make sense, since we do not call arguments, we call subprograms. Don’t let mixed
terminology like this confuse you. Functions are called, and arguments are passed to them.

11.5.3 Promotions in Argument Passing

If no prototype or function definition has defined an argument type, then arguments of type char and short are promoted to
int when passed to a function, and arguments of type float are promoted to double. This is why printf() uses "%d" for
char, short, and int, and "%f" for both float and double. The prototype for printf() only lists the format string, so
the compiler does not know the types of other arguments.

We can define formal arguments of type char, short, and float, but it is not usually a good idea as these values are likely
to be promoted implicitly within the function, reducing program performance.

11.5.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do formal argument variables differ from local variables in a function?

2. How are C arguments passed?

3. Draw a possible memory map showing the memory addresses, variable names, and contents of the arguments in main()
and all variables in pow() below after pow() is called, but before the body begins executing. Be sure to account for the
size of each variable and the fact that memory is byte addressable. Assume a starting address of 1000.

double pow(double base, unsigned exponent)

{
double p;
...

return p;
}

int main()

{
double b = 2.0;
unsigned e = 10;

printf("%f\n", pow(b, e));

return EX_OK;
}



C/Unix Programmer’s Guide Lecture Outline and Addendum 116 / 255

4. When are arguments promoted?

11.6 Library Functions

As stated early in this text, C is a minimalist language with only essential high-level language features and no predefined func-
tions.

Most of the functionality of C comes from libraries, archives of precompiled functions added to our programs during the link
stage of cc. The designers of the C language deliberately left out any feature that could be implemented as a function written in
C.

C programming does not have to be a low-level experience if we utilize functions properly as a substitute for high-level features
in other languages, such as vector operations in Matlab, Python, or R.

Each C compiler and operating system provides a huge collection of functions in the standard libraries along with prototypes
and supporting data types and constants in the accompanying standard header files. The standard libraries are found under /lib
and/or /usr/lib, and the standard headers under /usr/include.

Some Unix-compatible systems, such as most GNU/Linux distributions, place add-on libraries and headers in the same directo-
ries. Others, such as FreeBSD, keep all add-ons separate, e.g. under /usr/local.

Addendum: FreeBSD 13.1 the standard C library, /usr/lib/libc.a, contains 1,487 functions, compared to the 570 stated
in the book from FreeBSD 2.1. The standard math library, /usr/lib/libm.a, contains 279 (150 in FreeBSD 2.1).

shell-prompt: nm /usr/lib/libm.a | awk ’($2 == "T") && ($3 !~ "^_")’ | wc -l

All standard library functions are documented in the man pages. Additional documentation may be available in other forms, such
as GNU info. Sometimes there is a C function and a Unix command with the same name. In this case, only the Unix command
will be shown by a standard man command. To see all documented features with that name, use the -a flag:

shell-prompt: man -a printf

11.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Where does most functionality come from an C programs?

2. How can we get information about the chmod() library function, given that there is a Unix command with the same
name?

11.7 Documenting Functions

Each function should be documented with a block comment describing what the function does.

The function name by itself should provide a clear idea of what the function returns. If you cannot sum up what a function does
in a simple name, then the function is doing too much and your code is not cohesive. The function should be split into two or
more separate functions that can each be described with a simple name.

11.7.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How can we tell if our function is not cohesive?
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11.8 Top-down Programming and Stubs

A stub is a skeletal function with a complete interface (arguments and return value), but without the function body implemented.
A stub allows us to compile and test the function call before writing the function. This way, we can eliminate errors in the
interface first, and then focus entirely on writing the function body, knowing that the interface is correct. Otherwise, if a function
returns the wrong value, we don’t know whether the interface or the body is to blame.

This is how we extend our best practice of very frequent, incremental testing to programs that contain new functions. If we do
this consistently, debugging a program will never be difficult.

Suppose we want to print the square root of every integer from 1 to 100 and the C library did not provide a square root function.

#include <stdio.h>
#include <sysexits.h>

double my_sqrt(double n);

int main(int argc,char *argv[])

{
double x;

for (x = 0.0; x <= 10.0; ++x)
printf("sqrt(%0.1f) = %f\n", x, my_sqrt(x));

return EX_OK;
}

/*
* Stub for sqrt(), allows compiling and testing before completion

* to test the caller and the interface.

*/

double my_sqrt(double x)

{
// Return any value that shows the arguments were received correctly
// If there is more than one argument, we could return the sum of
// all of them, for example

return x;
}

We can now test the interface before proceeding to write the function body:

sqrt(0.0) = 0.000000
sqrt(1.0) = 1.000000
sqrt(2.0) = 2.000000
sqrt(3.0) = 3.000000
sqrt(4.0) = 4.000000
sqrt(5.0) = 5.000000
sqrt(6.0) = 6.000000
sqrt(7.0) = 7.000000
sqrt(8.0) = 8.000000
sqrt(9.0) = 9.000000
sqrt(10.0) = 10.000000

#include <stdio.h>
#include <sysexits.h>
#include <math.h>
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double my_sqrt(double n);

int main(int argc,char *argv[])

{
double x;

for (x = 0.0; x <= 10.0; ++x)
printf("sqrt(%0.1f) = %f\n", x, my_sqrt(x));

return EX_OK;
}

/***************************************************************************
* Description:

* Compute the square root of any non-negative real number x.

*
* Returns:

* Square root of x >= 0, -1 if x < 0

*
* History:

* Date Name Modification

* 2023-03-13 Jason Bacon Begin

***************************************************************************/

double my_sqrt(double x)

{
// Use static so this is only initialized once at compile time
const static double tolerance = 0.00000001;
double guess, next_guess;

if ( x < 0 )
return -1;

// Crude initial guess. The closer we get to sqrt(x), the
// fewer iterations the function will need to converge. There
// are more sophisticated initial guess algorithms available.
next_guess = x / 2.0 + 0.1; // Add .1 to avoid divide by 0

/*
* Estimate a square root using the Babylonian method.

* This is a numerical analysis method that computes successively

* better guesses given a reasonable initial guess.

*/
do
{

guess = next_guess;

// Babylonian formula for next guess
next_guess = (guess + x / guess) / 2.0;

// Loop until difference between guesses <= tolerance
// Note: Using the fabs() function entails function call overhead.
// A better solution would be a macro, which is covered in the
// cpp chapter. Iterative functions like this are expensive enough,
// so we should do all we can to make them more efficient.

} while ( fabs(next_guess - guess) > tolerance );

return next_guess;
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}

sqrt(0.0) = 0.000000
sqrt(1.0) = 1.000000
sqrt(2.0) = 1.414214
sqrt(3.0) = 1.732051
sqrt(4.0) = 2.000000
sqrt(5.0) = 2.236068
sqrt(6.0) = 2.449490
sqrt(7.0) = 2.645751
sqrt(8.0) = 2.828427
sqrt(9.0) = 3.000000
sqrt(10.0) = 3.162278

11.8.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write a stub for a pow() function that will eventually return a real base raised to a non-negative integer exponent.

11.9 Advanced: Recursion

C has the lowest function call overhead of any high-level language. This minimizes the overhead penalty of recursive functions.

The shorter the run time of the function body, the higher the overhead penalty. Below is a recursive factorial function. Since
this function is so short, it is not a good candidate for recursion. The function call overhead, even in C, will exceed the time
spent running the function body. The iterative version shown earlier is not efficient either. The only efficient way to implement a
factorial function is using a lookup table, which is covered in Section 15.6.

/*
* This function does minimal computation, so the function call

* overhead accounts for most of the total run time. Hence,

* this is not a good candidate for recursion. It is a good

* academic example, however, since it is simple and easy to

* understand.

*/

unsigned long factorial(unsigned long n)

{
if ( n < 2 )

return 1;
else

return n * factorial(n - 1);
}

// Suppose we call factorial(5)

Address n return
1000 5 5 * factorial(4)
1008 4 4 * factorial(3)
1016 3 3 * factorial(2)
1024 2 2 * factorial(1)
1032 1 1
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11.9.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write a recursive function to compute a power of a real base raised to a non-negative integer exponent.

11.10 Advanced: Scope and Storage Class

11.10.1 Scope

Scope refers to which part of a program can access a variable. In C, variables can be defined with a scope limited to any block
statement, such as in an if block. If another variable with the same name exists with a broader scope, the one with the narrower
scope is used.

Caution Instantiating local variables entails a small cost at run time. Hence, defining all variables that the start of a
function will lead to slightly faster code than defining some of them in narrower blocks, such as loops, where they will
be instantiated and destroyed multiple times.

int c = 5;

if ( c == 5 )
{

// This variable c is separate from the one used in the if condition
// and takes precedence within the if block
int c = 2;

printf("%d\n", c); // prints 2, not 5
}

We can also define a variable in a for loop header, to save a line of code:

for (int c = 1; c <= 10; ++c)
printf("%d\n", c);

11.10.2 Storage Class

Segments

The storage class of a variable or other memory block determine how, where, and when it is instantiated (allocated memory).

Every process running under Unix has its memory space segmented as shown in Table 11.3.

Segment Purpose
Text Machine code
Data Static variables
Stack Auto variables, saved data
Heap User-allocated memory

Table 11.3: Machine Language Program Segments
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Where memory address space is limited, the stack and heap can grow toward each other in order to utilize all available space.
On 64-bit computers with virtual memory, this is not necessary, since there is more address space than we can possibly populate
with any kind of real storage. 264 = 1.8 * 1019, about 18 billion gigabytes, or over a billion 16 gibibyte memory modules. A
typical PC only takes about 4 memory modules.

Static

A static variable uses space in the data segment and is instantiated when the process is born. The variable remains in existence
until the process terminates. A static variable retains its contents across function calls.

If a static variable definition has an initializer, it is initialized only once, when the process is born.

void count_calls()

{
static int calls = 1;

printf("I’ve been called %d times.\n", calls);
++calls;

}

Caution Global variables, i.e. variables defined outside of any function, are also static. Global variables should not
be used in application programming, since they cause side effects, where what happens in one function affects the
behavior of functions called in the future, without passing them information via arguments. This type of programming is
not modular. Some system code, such as device drivers, may require the use of global variables, but there is always a
more modular way to code applications.

Auto

The auto storage class is the default for local variables in all functions (including main). We can use the keyword auto when
defining variables, but there is no need to, since it is the default.

auto int c; // Same as "int c;"

Auto variables are instantiated in the stack segment at run-time, when the block containing the variable definition is entered. The
space is automatically freed when the block is exited.

Note Auto variables entail a very small amount of overhead at run time, as the stack pointer must be updated each time auto
variables are instantiated or destroyed. Static variables do not incur this overhead.

#include <stdio.h>
#include <sysexits.h>

void fn2(void)

{
int c;

printf("Address of c in fn2: %p\n", &c);
}

void fn1(void)
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{
int c;

printf("Address of c in fn1: %p\n", &c);
fn2();

}

int main(int argc,char *argv[])

{
int c;

printf("Address of c in main: %p\n", &c);
fn1();

return EX_OK;
}

System Stack
Local variables for main()
Local variables for fn1()
Local variables for fn2()

Table 11.4: Memory Map of Local Variables

Output of the program when run on an Intel Core i5 (64-bit) processor:

Address of c in main: 0x7fffffffe71c
Address of c in fn1: 0x7fffffffe718
Address of c in fn2: 0x7fffffffe714

If an auto variable has an initializer, it is initialized every time it is instantiated, i.e. every time the block defining it is reentered.
This means that a local auto variable in a function always starts with the initial value, unlike static variables. It also adds to
run time every time the block is entered.

Register

The register storage class requests that a variable be associated with a CPU register rather than a main memory address.
Registers are much faster than memory.

This storage class is obsolete, since modern compilers can utilize registers much better at the machine code level than we can at
the source code level. For example, the same register might be used to "cache" different variables (whichever one is being most
heavily used) in different sections of the same function.

Const

The const modifier marks a variable as read-only. This forbids assigning it a new value, which will trigger a compiler error.

Variables marked const can only be assigned a value via an initializer.

Formal argument variables marked const receive a value as an argument and cannot be modified by the function.

void function(const int n)

{
const int c = 1;
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c = 2; // Compiler error
n = 3; // Compiler error

}

Volatile

The volatile modifier informs the compiler that a variable could be modified by external forces at any time. The compiler
will not cache a copy of the variable in a register for better performance, since the copy in the register could become out-of-date
at any moment.

Volatile variables are only necessary where code that modifies the variable may be executed asynchronously, e.g. as part of a
signal handler or event handler. A signal handler is a function that is not called explicitly by the program, but in response to an
event such as a key press or mouse click. This topic is covered in Section 28.2.

11.10.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are the 4 segments of an executable and what do they contain?

2. When are static variables initialized? Auto variables?

3. When should we use the register storage class?

11.11 Advanced: The inline Request

The inline function modifier is a request to the compiler to eliminate function call overhead, but copying the machine code of
the function body to the locations of the function calls, rather than inserting code that jumps to and returns from the function.

Inlining is particularly useful for very short, fast functions that are called many times. For larger, longer-running functions, the
overhead of a function call tends to be trivial compared to the time spent running the body, so inlining has little effect. For
functions only called a few times, the function call overhead does not add up.

Addendum: Modern compilers generally inline small functions automatically where possible, so this explicit request generally
has little effect.

11.11.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What effect does inlining a function have?
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Chapter 12

Programming with make

12.1 Overview

Now that you know how to use subprograms, you have the ability to create programs from multiple source files.

Most real-world programs contain several thousand or tens of thousands of lines of code, and are broken into many separate
source files. A single source file of 50,000 lines of code would take a very long time to recompile every time we make a small
change. Using many smaller source files allows us to recompile only a small fraction of the program following each change.
Only the source files that have changed need to be recompiled.

The make utility is a standard Unix program that automatically rebuilds a designated set of target files when the source files from
which they are built have changed. For example, an object file or executable is a target file where the source files are C source
code. The PDF form of this document is a target file built from hundreds of DocBook XML source files.

The relationships between the files are spelled out in a Makefile, which is usually simply called Makefile (note the capital
M). The Makefile indicates which source files are needed to build each target file, and contains the commands for performing
the builds. A Makefile consists of a set of build rules in the following form, where "target-file" begins in column 1 and each
command is indented with a TAB character.

target-file: source-file1 source-file2 ...
command1
command2

...

Each rule is interpreted as "if any source file is newer than the target file, or the target file does not exist, then execute the
commands". This is made possible by the fact that Unix records the last modification time of every file on the system. When you
edit a source file, it becomes newer than the target that was previously built from it. When you rebuild the target (probably using
make), it becomes newer than the sources.

Before executing any rule, make automatically checks to see if any of the sources are targets in another rule. This ensures that
all targets are rebuilt in the proper order.

# The Makefile
#
# Before executing this rule, make checks for other rules where
# program.o is the target
program: program.o

cc -o program program.o -lm

# This rule will be executed before any rule where program.o is a source
# no matter where it is located in the Makefile
program.o: program.c program.h

cc -c program.c
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If we edit program.c or program.h, Unix records the modification time upon saving the file. When we run make, it first
sees that program depends on program.o. It then searches the Makefile to see if program.o is built from other files and
finds that it depends on program.c and program.h. It then sees that the edited source file is newer than program.o and
executes the command cc -c program.c. It then returns to the rule to build program and sees that program.o is now newer,
so it runs the command cc -o program program.o -lm.

What we will see:

shell-prompt: vi program.h # Make some changes and save
shell-prompt: make
cc -c program.c
cc -o program program.o -lm

There is really nothing more to it than this. The make command knows nothing about the target or source files. It simply compares
time stamps on the files and runs the commands in the Makefile. You specify the targets, the sources, and the commands, and
make blindly follows your instructions. You can make it as simple or as complicated as you wish.

Caution
One of the quirky things about make is that every command must be preceded by a TAB character. We cannot substitute
spaces.
Note that not all editors insert a TAB character when you press the TAB key. Many use soft tabs, where some number
of spaces are inserted instead. The APE editor uses soft tabs and indents only 4 columns when the TAB key is pressed
by default. However, it will save Makefiles with TAB characters for lines that are indented 8 columns (i.e. start in column
9 or later). Just be sure to indent commands at least to column 9, e.g. by pressing TAB twice.

Make can be used to generate any kind of file from any other files, but is most commonly used to build an executable program
from a group of source files written in a compiled language. Once we have a proper Makefile, we can edit any or all of the source
files, and then simply run make to rebuild the executable. The make command will figure out the necessary compile commands
based on the rules.

shell-prompt: make

By default, make looks for a file called Makefile and if present, executes the rules in it. A Makefile with a different name can
be specified following -f. The traditional filename for a Makefile other than Makefile is ".mk".

shell-prompt: make -f myprog.mk

12.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What does make do?

2. How is each rule in a makefile interpreted?

3. How does make know what is a target file and what is a command?

4. What is make most commonly used for?
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12.2 Building a Program

Suppose we want to build an executable program from two source files called myprog.c and math.c.

First, exactly one of the files must contain the main program. In C, this is the function called main().

To build the executable, we must first compile each source file to an object file using the -c flag. When compiling with -c, a
file is compiled (translated to an object file containing machine code), but not linked with other object files or libraries to create
a complete executable. Object files are not executable, since they only contain part of the machine language of the program. The
object files have a ".o" extension. After building all the object files, they are linked together along with additional object files
from libraries to produce the complete executable.

Using the Makefile below, make starts at the first rule it finds, indicating that myprog depends on myprog.o and math.o.
But before running the link command, make searches the rest of the Makefile and sees that myprog.o depends on myprog.c
and that math.o depends on math.c. If either of the ".c" files is newer than the corresponding ".o" file, then those rules are
executed before the link rule that uses them as sources.

// math.h

int square(int c);

// math.c

int square(int c)

{
return c * c;

}

// myprog.c

#include <stdio.h>
#include <sysexits.h>
#include <stdlib.h>
#include "math.h"

int main(int argc,char *argv[])

{
int c;

for (c = -10; c < 10; ++c)
printf("%d ^ 2 = %d\n", c, square(c));

return EX_OK;
}

# Makefile

# Link myprog.o, math.o and standard library functions to create myprog.
myprog: myprog.o math.o

cc -o myprog myprog.o math.o -lm

# Compile myprog.c to an object file called myprog.o
myprog.o: myprog.c

cc -c myprog.c

# Compile math.c to an object file called math.o
math.o: math.c

cc -c math.c
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Caution
Do not explicitly set the compiler to clang or gcc. Doing so renders the Makefile non-portable. Every Unix system has
a cc command which is usually the same as clang or gcc, depending on the specific operating system.
Addendum: The book contains some examples using gcc explicitly. At the time the book was written, it was a common
practice to install gcc on commercial Unix systems and use it instead of the native cc compiler. This is no longer
common.

Running make with this Makefile for the first time, we will see the following output:

shell-prompt: make
cc -c myprog.c
cc -c math.c
cc -o myprog myprog.o math.o

If we then edit math.c, then it will be newer than math.o. When we run make again, we will see the following:

shell-prompt: make
cc -c math.c
cc -o myprog myprog.o math.o

12.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show the compiler commands needed to build an executable called calc from source files calc.c and functions.c.

2. What C compiler command should usually be used by default in a makefile? Why?

3. How does make know when a source file needs to be recompiled?

12.3 Make Variables

We can render this makefile more flexible and readable by using variables to eliminate redundant hard-coded commands and
filenames, just as we do in scripts and programs.

To reference variables in the makefile, we enclose them in ${}. We can also use $(), but this is easily confused with Bourne
shell output capture, which converts the output of a process to a string expression that can be used by the shell.

BIN = myprog
OBJS = myprog.o math.o
CC = cc
CFLAGS = -Wall -O -g
LD = ${CC}
LDFLAGS += -lm # Add -lm to existing LDFLAGS

${BIN}: ${OBJS}
${LD} -o ${BIN} ${OBJS} ${LDFLAGS}

myprog.o: myprog.c Makefile
${CC} -c myprog.c

math.o: math.c
${CC} -c math.c
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# Output capture in a Unix shell command, using the output of the
# "date" command as a string
printf "Today’s date is %s.\n" $(date)

# We could also use the following, but since both make variables and
# shell output capture can be used in a Makefile, this could cause
# some confusion.

$(BIN): $(OBJS)
$(LD) -o $(BIN) $(OBJS) -lm

...

If we want to allow the user to override a variable, we can use the conditional ?= assignment operator instead of =. This tells
make to perform this assignment only if the variable was not set in the make command or the environment.

The += operator appends text to a variable rather than overwriting it. This is often useful for adding important flags to commands.

# Values that the user cannot override are set using ’=’

BIN = myprog
OBJS = myprog.o math.o

# Set only if the user (or package manager) has not provided a value
# -Wall: Issue all possible compiler warnings
# -g: Compile with debug info to help locate crashes, etc.

CC ?= cc
CFLAGS ?= -Wall -O -g
LD = ${CC}
LDFLAGS += -lm # Add -lm to existing LDFLAGS

${BIN}: ${OBJS}
${LD} -o ${BIN} ${OBJS} ${LDFLAGS}

myprog.o: myprog.c Makefile
${CC} -c myprog.c

math.o: math.c
${CC} -c math.c

If Makefile contains the conditional assignments above, then make will use cc -Wall -O -g to compile the code unless CC or
CFLAGS is defined in the make command or as an environment variable. Any of the following will override the defaults:

# Set CC and CFLAGS as make variables
shell-prompt: make CC=icc CFLAGS=’-O -g’

# Set CC and CFLAGS as environment variables
shell-prompt: env CC=icc CFLAGS=’-O -g’ make

# Set CC and CFLAGS as environment variables (Bourne shell family)
export CC=icc
export CFLAGS=’-O -g’
shell-prompt: make

# Set CC and CFLAGS as environment variables (C shell family)
setenv CC icc
setenv CFLAGS ’-O -g’
shell-prompt: make
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Some variables used in makefiles, such as CC, FC, LD, CFLAGS, FFLAGS, and LDFLAGS, are standardized. They have special
meaning to make and to package managers. Hence, you should always use these variable names to indicate compilers, linkers,
and compile/link flags. Most package managers will set these variables in the environment or make arguments, so the makefile
should respect the values provided by using ?= to only set defaults, rather than override what the package manager provides.

Variable Meaning Recommended default
CC C compiler cc
CFLAGS C compile flags -Wall -O -g
CXX C++ compiler c++
CXXFLAGS C++ compile flags -Wall -O -g
CPP C Preprocessor (not C++ compiler!) cpp
CPPFLAGS C Preprocessor Flags Not needed
FC Fortran compiler gfortran
FFLAGS Fortran compile flags -Wall -O -g
LD Linker ${CC}, ${FC}, or ${CXX}
LDFLAGS Linker flags -lm if using C math functions

PREFIX Directory under which all files are
installed /usr/local

DESTDIR Directory for temporary staged install .

MKDIR

mkdir command, often provided by
package manager as an absolute
pathname to avoid aliases and locally
installed alternatives

/bin/mkdir or just mkdir

INSTALL install command used to install files install

RM rm command, mainly for "clean"
target /bin/rm or just rm

Table 12.1: Standard Make Variables

12.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the purpose of make variables?

2. How do we set a variable in such a way that it can be overridden by make command-line arguments or environment
variables?

3. What variables should be used to specify the C compiler? C compiler flags? The linker? Link flags?

4. Write a makefile, using standard make variables, that builds the executable "calc" from files "calc.c" and "functions.c".

12.4 Phony Targets

Some additional common targets are included in most Makefiles, such as "install" to install the binaries, libraries, and documen-
tation, and "clean" to clean up files generated by the Makefile. These targets are not actual files and usually have no associated
source, and are only executed if specified as a command line argument to make. Note that make builds the first target it finds in
the Makefile by default, but if we provide the name of a target as a command line argument, it builds only that target instead.

To ensure that they behave properly even if a file exists with the same name as the target, they should be marked as phony by
listing them as sources to the .PHONY target. Otherwise, if there happens to be a file called "install" or "clean" in the directory,
its time stamp will determine whether the install or clean targets actually run.
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# Values that the user cannot override

BIN = myprog
OBJS = myprog.o math.o

# Set only if the user (or package manager) has not provided a value
# -Wall: Issue all possible compiler warnings
# -g: Compile with debug info to help locate crashes, etc.

CC ?= cc
CFLAGS ?= -Wall -O -g
LD = ${CC}
LDFLAGS += -lm

# Defaults for commands that may be provided by the package manager
MKDIR ?= mkdir
INSTALL ?= install
RM ?= rm

# Most build systems should perform a staged install (install to a
# temporary location indicated by ${DESTDIR}) rather than install
# directly to the final destination, such as /usr/local. The package
# manager can then check the staged install under ${DESTDIR} for
# problems before copying to the final target.

# Defaults for paths that may be provided by the package manager.
# This will install under ./stage/usr/local unless the user or package
# manager provides a different location.
DESTDIR ?= ./stage
PREFIX ?= /usr/local

${BIN}: ${OBJS}
${LD} -o ${BIN} ${OBJS} ${LDFLAGS}

myprog.o: myprog.c Makefile
${CC} -c ${CFLAGS} myprog.c

math.o: math.c
${CC} -c ${CFLAGS} math.c

.PHONY: install clean

install:
${MKDIR} -p ${DESTDIR}${PREFIX}/bin
${INSTALL} -c -m 0755 ${BIN} ${DESTDIR}${PREFIX}/bin

clean:
${RM} -f ${BIN} *.o

shell-prompt: make install
cc -c myprog.c
cc -c math.c
cc -o myprog myprog.o math.o
mkdir -p ./stage/usr/local/bin
install -c -m 0755 myprog ./stage/usr/local/bin

shell-prompt: make clean
rm -f myprog *.o

PREFIX is a standard make variable that indicates the common parent directory for all installed files. Executables (binaries) and
scripts are typically installed in ${PREFIX}/bin, libraries in ${PREFIX}/lib, header files in ${PREFIX}/include/
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project-name, and data files in ${PREFIX}/share/project-name. Some projects might also install auxiliary pro-
grams or scripts not meant to be run directly by the user. These typically go under ${PREFIX}/libexec/project-name.
Using a project-name subdirectory minimizes collisions, where multiple projects install files with the same name. For ex-
ample, several FreeBSD ports install files called version.h, but there is no collision since they install them under their own
directories:

/usr/local/include/alsa/version.h
/usr/local/include/assimp/version.h
/usr/local/include/bash/version.h

DESTDIR is another standard variable that was created to protect systems against install collisions. We do not use subdirectories
under bin, and occasionally two projects will install a program or script by the same name. For example, the open source
projects splay and mp3blaster both install a program called splay. Poorly designed Makefiles or other build systems may not
check for collisions, and will simply clobber (overwrite) files previous installed by another project. Most package managers
now require that the project install target use DESTDIR, so that the package manager can safely perform a staged install under
a temporary directory, and then use its own safe methods to copy the installed files to their final destination, while watching for
collisions. A staged installation also allows the package manager to check for proper permissions and verify that the installation
conforms to filesystem hierarchy standards. Makefiles do not need to set DESTDIR, but they should prefix all install destinations
with it.

Note
We do not need a ’/’ between DESTDIR and PREFIX, since PREFIX should be an absolute path name, which already begins
with one.

# Wrong
${MKDIR} -p ${DESTDIR}/${PREFIX}/bin
${INSTALL} -c -m 0755 ${BIN} ${DESTDIR}/${PREFIX}/bin

# Right
${MKDIR} -p ${DESTDIR}${PREFIX}/bin
${INSTALL} -c -m 0755 ${BIN} ${DESTDIR}${PREFIX}/bin

12.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Which target in a makefile is checked first, if no target is specified in the make command?

2. How do we ensure that the install target runs when specified, even if there is a file called "install" in the directory?

12.5 Using Header Files

The C language was designed to separate code into source files and header files.

Now that you know how to build an executable from multiple source files with make, we can separate our code as it was intended.

Source files (ending in .c) should generally contain only function definitions, and #includes that include header (.h) files. Only
header files should be included with #include, never source (.c) files.

Header files (ending in .h) should contain virtually all of our constant definitions, type definitions, function prototypes, and
anything else that might be useful to more than one source file.

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
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12.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What kind of code belongs in a source file (.c)?

2. What kind of code belongs in header files?

12.6 Makefile Generators

Addendum: genmake, imake no longer popular. They have been largely replaced by GNU configure and cmake.

Makefile generators aim to locate dependencies (e.g. libraries or tools on which a build depends) and automatically detect non-
portable features of the operating system on which a program is being built. In some cases, they may even download and build
dependencies for you.

The goal is to relieve end-users building the program from manual labor. The problem is, they almost never work consistently.
Developers creating a configure or cmake script cannot possibly foresee all of the variables it will encounter on other peoples’
computers, many of which have unique configurations. Attempts to make such scripts work reliably usually result in feature
creep (A.K.A. creeping feature syndrome), where the script becomes increasingly complex in response to problem reports from
end users. When such a script fails, the user is left with a nightmarishly complex problem.

Modern Unix systems offer an alternative to avoid this situation in the form of package managers, such as Debian Linux’s apt, the
FreeBSD ports system, MacPorts for macOS, the portable pkgsrc package manager that works on virtually any POSIX platform,
and Redhat Linux’s Yum. There are many others.

Package managers are highly evolved build systems that leverage the collaboration of thousands of experienced developers in
order to maintain high-quality builds in a tightly controlled environment. They automatically manage dependencies as separate
installations and incorporate patches to ensure a clean build of each package. This results in far more reliable software deployment
than ad hoc builds using the upstream developers’ configure or cmake script.

Simple Makefiles can be very portable if we know how to use make properly. If we leave dependency management to a package
manager, we can provide a simple, reliable Makefile for our project that will require minimal maintenance.

12.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the goal of makefile generators?

2. What is the main problem with makefile generators?

3. What is an alternative to makefile generators that leads to less problematic software deployment?
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Chapter 13

The C Preprocessor

The C preprocessor, cpp, is an example of a stream editor. It inputs text and outputs a modified version of the same text. Other
examples of stream editors include the standard Unix commands sed and m4.

The cpp command is automatically run by cc to filter C source code before compilation.

Changes to the source code are made according to cpp directives embedded in the input, such as #define and #include.

Note
We can view the output of the C preprocessor by running cc -E prog.c. It is usually helpful to paginate it using more: cc -E
prog.c | more.

13.1 Macros and Constants: #define

Any identifier created with #define is technically called a macro.

#define MAX_NAME_LEN 100

We can also define a macro in the compile command, using the -D flag:

shell-prompt: cc -DMAX_NAME_LEN=100 prog.c

C preprocessor macros can also take arguments, however, and hence act like functions.

#define ABS(x) ((x) < 0 ? -(x) : (x))

int main()

{
int a, b;

a = ABS(b);

...
}

Preprocessor output:

int main()

{
int a, b;
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a = ((b) < 0 ? -(b) : (b))

...
}

Many familiar library "functions" are actually macros defined in the headers:

shell-prompt: grep getchar /usr/include/stdio.h
#define getchar() getc(stdin)

Caution
Macro arguments should always be enclosed in () in the text, as should the entire text of the macro.

#define ABS(x) x < 0 ? -x : x

int main()

{
// Expands to y = x - 5 < 0 ? -x - 5 : x - 5 * 2;
y = ABS(x - 5) * 2;

...
}

Problem 1: -x - 5 is not the same is -(x - 5).
Problem 2: This multiplies 5 * 2 instead of ABS(x - 5) * 2.

#define ABS(x) ((x) < 0 ? -(x) : (x))

int main()

{
// Expands to y = ((x - 5) < 0 ? -(x - 5) : (x - 5)) * 2;
// which is what we want.

y = ABS(x - 5) * 2;

...
}

Caution
Another issue for which there is no hands-off solution is duplicating auto-increment and auto-decrement operations:

y = ABS(x++); // Expands to y = ((x++) < 0 ? -(x++) : (x++));

The variable x gets incremented twice in either case. This will not happen if ABS() is implemented as a function. This is
why macros are conventionally named in all upper-case. At least then the programmer knows whether they are calling
a function or a macro, and can watch out for side effects like this one.

Unlike C, the C preprocessor is line-oriented. If we want a macro to span multiple lines, we must use continuation characters at
the end of all but the last line:

#define ABS(x) \
((x) < 0 ? -(x) : (x))
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13.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show a command to view the preprocessor output for the file prog1.c.

2. Show how to define the constant DEBUG with a value of 1, both within a program and from the command line.

3. Show how to define a macro called INVERSE that produces the mathematical inverse of a number.

4. What operators should we avoid using in macros? Why?

5. Why should we use parentheses extensively in macro definitions?

13.2 Functions vs. Macros

When a program calls a function, it must spend time passing arguments, jumping to, and returning from the function. This is
known as function call overhead. Macros are faster than functions, because they have no such overhead. An inlined function
behaves more like a macro.

For very small functions that execute quickly and are called many times, function call overhead can be significant. This would
likely be the case for an absolute value function. For longer-running functions or functions that are only called a few times, the
overhead is not significant.

Another advantage to macros over C functions is that they are polymorphic (type-independent), mostly.

#define ABS(x) ((x) < 0 ? -(x) : (x))

int main()

{
int a, b;
double x, y;

a = ABS(b);
y = ABS(x);

...
}

Note
In C, we would need to define a separate function for each data type to achieve the same effect. This is frequently done in the
standard C libraries and headers:

shell-prompt: grep abs /usr/include/math.h
double fabs(double);
float fabsf(float);
long double fabsl(long double);

In C++, we can overload functions, i.e. create multiple functions with the same name, but different interfaces (argument and
return value types). Another option in C++ is a template function, in which case we define only one function, but with flexible
argument and return types. Template functions incur a cost at run time, since they are generally just-in-time compiled as each
version is needed.
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13.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why are macros typically faster than functions? When are they not?

2. How can we help programmers using our macros avoid side-effects like those caused by ++ and --?

13.3 Header Files: #include

The #include directive inserts a header file into the source code in place of itself.

System headers, usually found in /usr/include, are enclosed in angle brackets:

#include <stdio.h>

Headers that are part of our project, and typically found in the current working directory, are enclosed in double quotes:

#include "myheader.h"

Virtually all macro definitions, type definitions, and prototypes should reside in header files, so that they can be reused from
multiple source files. Source (.c) files, should generally only contain #includes and function definitions.

If we wish to use a function definition in multiple different projects, placing it in a header file is not the right way to do it, since it
leads to many problems such as duplicate definitions during compilation. Functions that need to be shared should be precompiled
and placed in a library, covered in Chapter 20.

13.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the difference between angle brackets and double quotes in #include?

2. What should we put in ".c" source files and what should we put in headers?

13.4 Advanced: Conditional Compilation

Conditional compilation allows us to exclude sections of code from being compiled. This is often better than disabling it with an
if statement, since it reduces the size of the executable and eliminates the cost of the if check at run-time.

13.4.1 #if

The #if-#endif directive pair is an if statement that operates during preprocessing, rather than during program execution.
If the expression provided has a non-zero value, then the code within the #if-#endif is output by cpp and passed onto the
compiler.

We can use this to conditionally include debug code in a build, for example"

shell-prompt: cc -DDEBUG=1 prog.c
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// Caveman debug code to track list_size during execution
// If DEBUG is defined and non-zero, the fprintf() is passed onto
// the compiler.
#if DEBUG

fprintf(stderr, "list_size = %zu\n", list_size);
#endif

// This, on the other hand, is always compiled and the if test
// incurs a small overhead cost at run time
if ( DEBUG )

fprintf(stderr, "list_size = %zu\n", list_size);

13.4.2 Preprocessor Operators

The #if directive accepts the same operators as a C Boolean expression, such as ==, !=, etc. One possible use is to support
multiple levels of debug code:

// Debug level 1 or higher, basic debug output
#if DEBUG >= 1

fprintf(stderr, "list_size = %zu\n", list_size);
#endif

// Debug level 2 or higher, more extensive debug output
#if DEBUG >= 2

fprintf(stderr, "list[list_size] = %d\n", list[list_size]);
#endif

13.4.3 #ifdef, #ifndef, and defined()

The #ifdef, #ifndef, and #if defined() constructs simply check whether a macro is defined, regardless of its value.

shell-prompt: cc -DDEBUG prog.c

#ifdef DEBUG
fprintf(stderr, "list_size = %zu\n", list_size);

#endif

// Equivalent to above
#if defined(DEBUG)

fprintf(stderr, "list_size = %zu\n", list_size);
#endif

The #if defined() construct is useful when we want to check multiple macros. We can use Boolean operators as we do in
a C Boolean expression.

#if defined(MACRO1) && defined(MACRO2)

#endif

13.4.4 Improving Portability

Many predefined macros exist to provide the compiler information about the build environment, such the operating system name
and version, which is indicated by a macro such as __linux__, __FreeBSD__, or __APPLE__.
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#if defined(__FreeBSD__) || defined(__linux__)

// Some code that only works on FreeBSD and Linux as far as we know

#endif

This sort of coding is generally to be avoided in favor of writing more portable code in the first place. Most existing operating
systems, including BSD, Linux, and macOS are more than 99% POSIX-compliant. There is rarely a need to write non-portable
code in application programming if we avoid OS-specific extensions and write POSIX-compliant code.

13.4.5 Nesting #include Efficiently

Suppose file.c includes header1.h and header2.h, and header1.h includes header2.h, because it needs a macro
or prototype defined there. This is a common situation. If not dealt with, everything in header2.h will be processed twice,
and hence redefined, leading to compiler errors and warnings.

To prevent the problems caused by redundant inclusions, system headers usually have their entire contents guarded by a macro,
to avoid redefining everything they contain when they are included more than once:

// In header2.h
#ifndef _HEADER2_H_
#define _HEADER2_H_

// Contents of header2.h

#endif

This prevents everything in the header from being processed a second time, but cpp still has to read through the file again, which
slows down compilation. To prevent the file from even being read again, we can guard the #include:

// In header1.h:
#ifndef _HEADER2_H_
#include <header2.h>
#endif

This prevents cpp from even opening and reading header2.h if it has been included previously. This should only be necessary
in header files, where we can’t predict what may have already been included upstream. In a C source file, we need only include
header1.h, since it will pull in header2.h for us.

13.4.6 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show how to print "list_size = " followed by the value of list_size, only if the macro DEBUG is defined.

2. When should we use platform-detection predefined macros such as __FreeBSD__ and __linux__?

13.5 Advanced: Other Directives

The #error directive terminates preprocessing and issues an error message:

#ifndef __UNIX__
#error "This program is only for Unix-compliant platforms."

#endif

The #pragma directive is an extensible interface for non-portable preprocessor features. Each compiler has its own set of
pragmas, so this should be used with caution.
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13.6 Advanced: The Paste Operator: ##

While cpp is a text editor, it does recognize and separate tokens of the C language, such as keywords, operators, variables, etc.

The paste operator, ##, allows us to construct a C token, such as a variable name, from multiple parts.

#define GAME(game_num) game_##game_num

int main()

{
// Expands to printf("Game 1 attendance = %d\n", game_1);
printf("Game 1 attendance = %d\n", GAME(1));

...
}

13.7 Advanced: Predefined Macros

C preprocessors include many other predefined macros to provide information that might be useful for error messages, etc.

__DATE__ Compile date
__FILE__ Source filename
__LINE__ Source line
__TIME__ Compile time

fprintf(stderr, "Error detected in %s, line %d\n", __FILE__, __LINE__);

13.8 Addendum: Advanced: Variadic Macros (C99)

As of the C99 standard, macros can take a variable number of arguments, much like the printf() and scanf() functions.

#define debug_printf(format, ...) \
#ifdef DEBUG \

fprintf(stderr, format, __VA_ARGS__) \
#endif
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Chapter 14

Pointers

14.1 Pointers: This Stuff is BIG!

Pointers are one of the features of C that allow us to vastly improve performance of the code. For example, pointers allow us to
avoid moving large amounts of data around (as you will see in Section 16.4), a wasteful practice that is harder to avoid in some
other high-level languages.

As stated earlier, the C language is less abstract than other high-level languages. Nowhere is this more evident than in how C
handles pointers. A pointer is simply a variable that contains the address of an object, rather than the object itself.

In C, we treat addresses of objects, and the objects to which they point, explicitly in all cases. This helps us better understand
what is happening at the hardware (machine code) level. Abstractions such as references in C++ and Java are implemented as
pointers at the machine code level.

14.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are two benefits of learning about C pointers?

14.2 Pointer Basics

A pointer is a variable that contains a memory address. Memory is an array of bytes, with addresses starting at 0. Every variable
name represents a memory address, but most contain an object such as integers, characters, or floating point values. A pointer
variable contains a memory address of a value rather than the value itself.

A memory address is an unsigned integer, essentially a subscript to the array of bytes we call "memory". However, we should
never use integer variables to contain addresses. The compiler must handle pointers differently in some situations. For example,
the ++ operator adds 1 to an integer variable, but adds the size of the object pointed to by a pointer variable. I.e., if a pointer
variable called num_ptr points to a double object, then ++num_ptr adds 8, not 1, to the address contained in num_ptr,
since a double occupies 8 consecutive memory addresses. The ++ moves the pointer to the next double in memory.

Also note that an address may or may not be the same size as an int or a long. Assigning a pointer to an int could therefore
result in a loss of the higher bits of the address, which would obviously be catastrophic to the program.



C/Unix Programmer’s Guide Lecture Outline and Addendum 141 / 255

14.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the difference between a C pointer variable and other C variables?

2. What is an address?

3. How do the ++ and -- operators affect pointers and non-pointers?

4. What is the difference between a pointer and an integer?

14.3 Defining Pointer Variables

To define a pointer variable, simply add a ’*’ before the variable name. The ’&’ (address of) operator can be used to refer to the
address of any variable in a program.

int x; // Contains an int object
int *ptr; // Contains the address of an int object

Caution
The ’*’ in a variable definition is associated with the variable, not the type.

int *p1, p2; // One pointer, one int

int *p3, *p4; // Two pointers

14.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show a single variable definition that defines two double variables called a and b, and two pointers to doubles called
ptr1 and ptr2.

14.4 Using Pointers: Indirection

Table 14.1 shows a possible memory image for the following variable definitions.

int x; // Contains an int object
int *ptr; // Contains the address of an int object
double y;

x = 5;
ptr = &x; // ptr now contains the address of variable x

The variable ptr is assigned the address (1000), not the value (5), of the variable x. After that, we can refer to the value in x
using either x, or by dereferencing the pointer ptr, by placing a ’*’ in front of it. The expression *ptr in a statement means
"the object ptr points to". Note that the same syntax, *ptr has a different meaning in a variable definition.
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Address Name Contents
1000 x 5
1004 ptr 1000
1008 y ?

Table 14.1: Memory map

printf("%d\n", x);
printf("%d\n", *ptr); // Same effect as above

Note
While x and *ptr both refer to the object in x, accessing it as *ptr takes slightly longer, since the computer must first get the
address from ptr and then get the value of x from that address. This is called dereferencing, or indirect reference, or simply
indirection.

// RISC-V assembly language equivalent of y = x;
ld x1, x // Load value of x from memory into the CPU
sd x1, y // Store value to y

// RISC-V assembly language equivalent of y = *ptr;
ld x1, ptr // Load address of x from memory into the CPU
ld x2, (x1) // Load value pointed to by ptr into CPU
sd x2, y // Store value to y

Caution
Like all C variables, pointers contain garbage until they are assigned a value. Accessing an incorrect address through
a pointer can result in serious data corruption, or possibly a program crash, usually caused by a segmentation fault,
where the hardware detects an attempt to access an address without authorization. For example, trying to write to the
text segment of a program (the machine instructions). We can assign the sentinel value NULL to a pointer to indicate
that it does not contain a valid address.

int *ptr = NULL;

if ( ptr == NULL )
{
}

Note
It is common to increment pointers or add an integer offset to a pointer, but this is the only way that pointers and integers should
be mixed. Anything else is likely to result in data corruption. Manipulating pointers this way is covered in Chapter 15.

Caution
Some programmers might think it’s clever to abbreviate their code as follows:

if ( ptr != NULL ) // Clear and readable

if ( !ptr ) // Unclear, just showing off

As NULL is defined as (void *)0 by recent C standards, the latter will work, but it is not quality code, since it makes the
reader waste time verifying what the code is doing. There is no benefit to using !ptr in place of ptr != NULL. This
is the same issue discussed earlier regarding integer comparisons to 0.
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14.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show a possible memory map for the following variables, assuming the address of a is 2000, an int is 32 bits, and an
address is 64 bits.

int a = 5, *ptr = &a, b = 10;

2. Show how to print the value of b in the previous question using the pointer ptr.

3. Is there any cost to using pointers to access an object instead of accessing it directly from a non-pointer variable?

4. Will the following code work? What does it mean? Is there a better approach? Why?

double *ptr = NULL;

if ( ptr )
{

printf("%f\n", *ptr);
}

14.5 Pointers as Function Arguments

The scanf() function is an example of a function that uses pointers as arguments. Any function that needs to modify a variable
in the caller, must have the address of that variable, not just a copy of its value. As another example, consider a simple swap
function. It is impossible to swap two arguments when passing them by value:

int main()

{
int x, y;

x = 1, y = 2;
swap(x, y);

return EX_OK;
}

void swap(int a, int b)

{
int temp;

temp = a;
a = b;
b = temp;

}

Since a and b are local variables that only have copies of x and y, x and y are unaffected by the swap.

Below is a useful swap function that can actually access the arguments x and y, since it receives their memory addresses:

int main()

{
int x, y;
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Address Name Contents
3000 x 1
3004 y 2
3008 a 1
3012 b 2
3016 temp ?

Table 14.2: Variable contents at the start of swap()

Address Name Contents
3000 x 1
3004 y 2
3008 a 2
3012 b 1
3016 temp 1

Table 14.3: Variable contents at the end of swap()

x = 1, y = 2;
swap(&x, &y);

return EX_OK;
}

void swap(int *a, int *b)

{
int temp;

temp = *a;

*a = *b;

*b = temp;
}

Address Name Contents
3000 x 1
3004 y 2
3008 a 3000
3016 b 3004
3024 temp ?

Table 14.4: Variable contents at the start of swap()

Pointer argument variables are often defined as const in order to prevent program bugs from wreaking havoc at run time. There
is a simple trick to understanding the use of const with pointers.

int func(const char *str)

{
}

Read backward, saying "pointer" for ’*’: "str is a pointer to a char constant". We can change the address stored in str, but we
cannot change the character at that address.
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Address Name Contents
3000 x 2
3004 y 1
3008 a 3000
3016 b 3004
3024 temp 1

Table 14.5: Variable contents at the end of swap()

int func(char const *str)

{
}

Read backward, saying "pointer" for ’*’: "str is a pointer to a constant char", which is the same thing as above.

int func(char * const str)

{
}

"str is a constant pointer to a char", which is different. Here, the pointer (address) is constant, not the char to which it points. We
cannot change the address stored in str, but we can change the character at that address.

14.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write a C function that prompts the user for and returns the coefficients A, B, and C of a quadratic equation Ax2 + Bx + C
= 0.

14.6 Typedefs and Pointers

We can create a new pointer type using typedef:

typedef int * int_ptr_t;

int main()

{
// All the variable below are pointers to ints
int *p1, *p2;
int_ptr_t p3, p4;

...
}

Such a simple type definition has no major pros or cons. Most programmers don’t bother defining such simple types, and prefer
to see a ’*’ in the variable definition.
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Caution
Using #define to create types is also possible, but discouraged. If we attempt such a thing for a pointer type, it will
lead to problems:

#define int_ptr_t int *

int main()

{
int_ptr_t p3, p4; // Expands to int *p3, p4;

...
}

14.7 Addendum: C99: The restrict Pointer Modifier

The restrict modifier is a hint to the compiler that allows some additional optimizations.

int function(int * restrict p)

{
...

}

This tells the compiler that no other pointer will be used to access the object pointed to by p. When multiple pointers do not
point to the same object, the compiler can generate simpler machine code. https://en.wikipedia.org/wiki/Restrict.

Caution It is the programmer’s responsibility to ensure that the code behaves according to the assumptions of
restrict. Behavior is undefined otherwise. If you do not fully understand what restrict means, don’t use
it.

https://en.wikipedia.org/wiki/Restrict
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Chapter 15

Arrays and Strings

Using arrays, lists, vectors, or any other aggregate objects to inhale large amounts of data into memory, should be avoided as
much as possible. Arrays are often used where they are not necessary, simply because it is intuitive.

Efficiency is important in all programming, but paramount in systems programming. Unlike application programs, system code
is used by everyone, so the cost of performance and reliability issues is very high. Also, system code should stay out of the way,
leaving most hardware resources available for the applications that need them.

Consider a problem specified as "Read in a list of values and then print their square roots". If we don’t stop and think first,
we might follow the subliminal suggestion to design a solution that involves an array, first reading in all the values, and then
computing and printing the square roots. In reality, this problem does not require storing more than one value at a time in memory.
More on this in Section 15.9.

Now consider a problem where we need to read a list of numbers and print them in reverse order. This problem, along with some
matrix operations such as transposition, are difficult to solve efficiently without the use of arrays. So, arrays have their uses,
though we should always avoid them where feasible.

In general, using arrays or similar constructs is a good idea where the only alternative is reading from disk repeatedly. If each
value in a file need only be processed once, then storing multiple values in memory at the same time provides no advantage.

15.1 One-dimensional Arrays

A scalar variable is a variable that holds a single value. It is dimensionless, having no length, width, etc.

An array holds multiple values, across at least one dimension. A 1-dimensional array can hold a mathematical vector, a character
string, or a list. A 2-dimensional array can hold a matrix, a table, etc.

A fixed size array can be created by following a variable name with the number of elements in square brackets. The size should
always be a named constant, never a hard-coded value:

long ages[MAX_AGES];

Caution
Fixed size arrays usually waste a fair amount of memory, because the data they hold can vary greatly in size, and the
array must be sized to hold the largest possible list, matrix, table, etc. This is less of a problem for typical PCs and
servers, which use virtual memory, but a critical problem for embedded devices that address RAM directly and have
very little of it.
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Caution
The default storage class for arrays defined inside a function, like all other variables, is auto, which means they occupy
stack space. Allocating large auto arrays can cause stack overflows. The stack size allowed for individual processes
is limited on all POSIX systems. Some systems are more generous than others. For example, FreeBSD 13 allows 512
MiB by default, while Alma Linux allows only 8 MiB.

# ulimit reports stack size in kibibytes (KiB)

FreeBSD moray.acadix bacon ~ 999: ulimit -s
524288

Linux alma8.acadix bacon ~ 1001: (pkgsrc): ulimit -s
8192

Hence, large fixed size arrays must be defined as static, so that they reside in the data segment rather than the
stack segment.

static long ages[MAX_AGES];

Better yet, arrays can be dynamically allocated on using malloc(), so they reside in the heap segment and don’t
waste space. This is covered in Chapter 16.

Individual elements in an array can be accessed using a subscript, also enclosed in square brackets.

long ages[MAX_AGES];
size_t c;

for (c = 0; c < MAX_AGES; ++c)
printf("%ld\n", ages[c]);

Subscripts in C begin at 0 and end at the size of the array - 1. The subscript can be any integer expression, but usually it should
be of type size_t, an unsigned integer defined in the standard header files, with the same size as a memory address. An array
is a segment of memory, and a subscript is an offset added to the base address of the array (the address of the first element). The
negative values in the range of an int serve no purpose for array subscripts, which are always positive. An unsigned int
may not have enough range for a large array, and long or unsigned long will require costly multiple precision arithmetic
on some CPUs.

A memory map of the variables above might appear as follows:

// Assuming a 64-bit computer, so long is 64 bits, and
// MAX_AGES is defined as 5
3000 ages[0]
3008 ages[1]
3016 ages[2]
3024 ages[3]
3032 ages[4]
3040 c

We can see from the memory map above that the memory address of each array element is the base address (3000 in this case) +
subscript * sizeof(long). This address calculation must occur for every array access, so accessing array elements is slower than
accessing scalar variables.

Note The sizeof() operator in C evaluates to the size of a type or object in bytes. It is a C operator, not a library function.

Caution If a program accesses ages[5] in the array above, it will actually be accessing the memory address of the
variable c (and misinterpreting the binary data found there if it is not of the same data type as an array element). This
is called a stray subscript or out of bounds subscript. Writing to an out of bounds address is called a buffer overflow,
and is one of the most common program bugs leading to security breaches.
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Caution
At the machine language level, almost all operations on arrays use loops. Exceptions include SIMD instructions that
can process a very small vector (e.g. 4 values) in parallel. Some languages have built-in features that hide these loops,
such as vector capabilities:

% Matlab code to swap two rows of a 2D matrix:
% These look like scalar operations at the source code level, but each
% contains an implicit loop at the machine code level. We know that
% mat[r1] is a vector, since mat is a 2D matrix, yet there is only
% one subscript. Many other languages support similar vector
% operations that contain hidden loops.

temp = mat[r1];
mat[r1] = mat[r2];
mat[r2] = temp;

Even in C, which has no built-in vector capabilities, loops may be hidden inside library functions:

// strlen() loops through the characters looking for the null terminator
name_len = strlen(name);

// Function call to add matrices. The function itself must have
// a nested loop to traverse the matrices.
matrix_add(sum, mat1, mat2);

Always be aware that operations on arrays take many times longer than operations on scalar variables.

Arrays can be initialized in the definition using a list of values enclosed in curly braces. If an initializer is provided, the array
size can be omitted, since the initializer indicates how many values there are.

int ages[] = { 0, 0, 0, 0, 0 };

15.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the difference between a scalar variable and an array?

2. What are two drawbacks to fixed size arrays?

3. What is a potential problem with simple arrays defined inside functions?

4. How do we get past the limits of stack size for arrays?

5. Draw a possible memory map of the following variables, assuming a 64-bit CPU, and a starting address of 1000.

float vector[4] = { 5, 2, 1, 7 };
size_t vector_len = 0;
int c = 1;

6. What happens when we write to an array using an out-of-bounds subscript?

7. Are higher level languages that support vector operations faster than C, since they don’t need to use loops?



C/Unix Programmer’s Guide Lecture Outline and Addendum 150 / 255

15.2 Arrays and Pointers

In C, an array name is actually a pointer constant. Except for the fact that we cannot change the address to which it points, an
array name is 100% interchangeable with a pointer variable.

// A standard local array on the stack
int ages[MAX_AGES];

// A constant pointer to an array allocated on the stack by alloca()
// is the same as the definition above.
// Note: Use of alloca() is risky due to stack limitations and
// lack of stack overflow detection. Its use is discouraged.
int * const ages = alloca(MAX_AGES * sizeof(int));

We can dereference an array name just like a pointer, and we can use subscripts on a pointer variable just like an array:

int ages[MAX_AGES], *p, first_age;

p = ages;

// All of the following are equivalent
first_age = ages[0];
first_age = *ages;
first_age = p[0];
first_age = *p;

// This is illegal, since ages is a pointer CONSTANT. It always
// refers to the base address of ages, i.e. &ages[0], and cannot be
// altered to point to any other address.
++ages;

Note
One peculiar feature of C is that the & (address of) operator has no effect on an array name. Since the array name is already a
pointer, but not a variable, the designers of C chose to ignore the & operator:

int main()

{
int list[MAX_LIST_SIZE];

// The "%p" format specifier is used to print a memory address
printf("%p %p\n", list, &list);
return EX_OK;

}

// Actual output:
0x7fffffffe750 0x7fffffffe750

15.2.1 Pointers Instead of Subscripts

Anything that can be done with an array subscript can also be done with a pointer variable.

Using subscripts involves computing an address at run time, i.e. base-address + subscript * sizeof(array-type).

In place of subscripts, which must be multiplied by sizeof(type) and added to the base address of the array, we can use a pointer
variable that points directly to each element in the array.
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Note Note that any time we add an integer value to a pointer, the integer is first multiplied by the size of the type pointed to.
The compiler knows the size of the data type, so this multiplication is done at compile-time, not at run time.

int ages[MAX_AGES], *p, *end_ages;
size_t c;

// Accessing ages[c] involves computing ages + c * sizeof(int)
// every time
for (c = 0; c < MAX_AGES; ++c)

printf("%d\n", ages[c]);

// Accessing *p does not involve an address calculation, since p
// contains the actual address of each array element
// end_ages contains ages + MAX_AGES * sizeof(int), and
// ++p adds sizeof(int) to p
// The only address calculation here is end_ages, which is
// computed only once
for (p = ages, end_ages = ages + MAX_AGES; p < end_ages; ++p)

printf("%d\n", *p);

// Values of c and p in sequence, assuming the base address of ages is 2000,
// MAX_AGES is 5, and an int is 32-bits
c p
0 2000 = 2000 + 0 * sizeof(int)
1 2004 = 2000 + 1 * sizeof(int)
2 2008 ...
3 2012
4 2016 = 2000 + 4 * sizeof(int)

end_ages = 2000 + MAX_AGES * sizeof(int) = 2000 + 5 * 4 = 2020

Below is an example program and run times for each loop:

#include <stdio.h>
#include <sysexits.h>
#include <stdlib.h>
#include <sys/time.h>
#include <xtend/time.h>

#define LIST_SIZE 1000000000

int main(int argc,char *argv[])

{
static unsigned short list[LIST_SIZE], *p, *end = list + LIST_SIZE;
size_t c, reps;
struct timeval start_time, end_time;

puts("Timing array access via pointer...");
gettimeofday(&start_time, NULL);
for (reps = 0; reps < 10; ++reps)
{

for (p = list; p < end; ++p)

*p = p - list + 1;

// Prevent optimizer from eliminating useless loop above
printf("%u\r", list[random() % LIST_SIZE]);

}
gettimeofday(&end_time, NULL);
printf("time = %f\n", xt_difftimeofday(&end_time, &start_time) / 1000000.0);
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puts("Timing array access via subscript...");
gettimeofday(&start_time, NULL);
for (reps = 0; reps < 10; ++reps)
{

for (c = 0; c < LIST_SIZE; ++c)
list[c] = c + 1;

// Prevent optimizer from eliminating useless loop above
printf("%u\r", list[random() % LIST_SIZE]);

}
gettimeofday(&end_time, NULL);
printf("time = %f\n", xt_difftimeofday(&end_time, &start_time) / 1000000.0);
return EX_OK;

}

Timing array access via pointer...
time = 5.050704
Timing array access via subscript...
time = 6.221000

For the sake of understanding, we can also consider the fact that *(ages + c) is equivalent to ages[c], since the address
ages + c is actually computed as ages + c * sizeof(int). Likewise, ages + c is equivalent to &ages[c]. Use the more
readable of the alternatives. They do the exact same thing at the machine code level.

15.2.2 Using Subscripts with Pointer Variables

As mentioned earlier, we can use an array subscript on a pointer variable, the same as for an array. One difference is that it might
actually make sense to use a negative subscript on a pointer, provided that it does not take us out of bounds, to an address before
the base address.

// Shift the elements of an array
// This is expensive and should be avoided wherever possible
// It’s only an academic example to help understand a concept

// Using subscripts
for (c = 1; c < MAX_AGES; ++c)

ages[c - 1] = ages[c];

// Using a pointer and a subscript
for (p = ages + 1; p < end_ages; ++p)

p[-1] = *p; // Or, *(p - 1) = *p;

// Using two pointers
for (src = ages + 1, dest = ages; src < end_ages; ++src, ++dest)

*dest = *src;

An alternative to shifting the contents of the array would be simply setting a pointer to ages[1]. This avoids moving large amounts
of data.

p = &ages[1]; // p can now be used just like ages[] would
// be used after shifting

15.2.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.
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1. What is the difference between an array name and a pointer variable in C?

2. How does using a pointer to access array elements improve performance?

15.3 Typedefs and Arrays

typedef unsigned int list_t[MAX_AGES];

int main()

{
list_t ages; // Array of MAX_AGES ints

...
}

15.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show a typedef for an array of MAX_NAME_LEN + 1 characters.

15.4 Advanced: More Fun with Pointers

Skip for now.

15.5 Arrays and Functions

Hypothetically speaking, we could say that arrays are passed by reference, since the address is being sent to the function rather
than the value.

Technically, since an array name represents an address, and not an object, it is actually a pointer constant being passed by value.

When passing an array to a C function, we should also pass the array size, or the size of the list stored in the array, as a separate
argument. This allows the function to accept array arguments of different sizes, and to efficiently handle the case where the array
is not full.

Note that we do not need to specify a size for an array in a formal argument variable, except for multidimensional arrays, where
it is necessary to know how many elements are in each row, for example.

int main()

{
int ages[MAX_AGES];
size_t age_count; // <= MAX_AGES

age_count = read_ages(ages, MAX_AGES);

...

print_ages(ages, age_count);

return EX_OK;
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}

// No size indicated for ages, since it may receive the
// address of arrays of different sizes
// Could also define ages as "int *ages", optionally using const

void print_ages(int ages[], size_t age_count)

{
size_t c;

for (c = 0; c < age_count; ++c)
printf("%d\n", ages[c]);

}

Caution
A function should never return the address of an auto variable:

int *read_ages(size_t *list_size)

{
int ages[MAX_AGES];
size_t c;

for (c = 0; scanf("%d", &ages[c]) == 1; ++c)
;

*list_size = c;

// This returns the address of an array that will cease to exist
// as soon as the function returns. The stack space where this array
// is located will be repurposed by the next function called.

return ages;
}

If a function returns the address of an array or any other variable, it must be defined as static, or allocated with
malloc(), which is covered in Chapter 16.

15.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Write a C function that reads one line of text from stdin into a character array, stopping if the array is full before a newline
is read. The newline should not be included in the string. The function should return the size of the string read.

15.6 Lookup Tables

If a value is expensive to compute at run time, and there aren’t a lot of them, then a lookup table might be a good option. A
lookup table is simply an array filled with precomputed values.

The factorial function, N!, grows so fast that 21! is beyond the range of a 64-bit unsigned integer. This makes it an ideal candidate
for a lookup table. Rather than compute factorials at run time, which requires a loop, we precompute all the factorials we can
represent with uint64_t and store them in an array, which is a trivial amount of memory in this case.



C/Unix Programmer’s Guide Lecture Outline and Addendum 155 / 255

It is crucial that this array be defined as static. Static variables are initialized at compile time. In contrast, auto arrays are
initialized at run time, every time the code block is entered. Initializing an array of 21 factorials at run time is equivalent to
computing 20!, the most expensive of all of them.

uint64_t slowfact(unsigned int n)

{
// This is initialized at run time, every time the function is
// called, which actually takes longer than computing a factorial
// for n < 21.
uint64_t table[] = { 1ul, 1ul, 2ul, 6ul, 24ul, 120ul, 720ul,

5040ul, 40320ul, 362880ul, 3628800ul, 39916800ul, 479001600ul,
6227020800ul, 87178291200ul, 1307674368000ul, 20922789888000ul,
355687428096000ul, 6402373705728000ul, 121645100408832000ul,
2432902008176640000 };

// No need to check for n < 0 since n is unsigned
return n <= 20 ? table[n] : -1.0;

}

uint64_t fastfact(unsigned int n)

{
// This is initialized at compile time, so the values are already
// in the array before the function is called. The only costs to
// this function are function call overhead and a simple address
// calculation table + n * sizeof(uint64_t). Much faster
// than a loop or recursion.
static uint64_t table[] = { 1ul, 1ul, 2ul, 6ul, 24ul, 120ul, 720ul,

5040ul, 40320ul, 362880ul, 3628800ul, 39916800ul, 479001600ul,
6227020800ul, 87178291200ul, 1307674368000ul, 20922789888000ul,
355687428096000ul, 6402373705728000ul, 121645100408832000ul,
2432902008176640000 };

// No need to check for n < 0 since n is unsigned
return n <= 20 ? table[n] : -1.0;

}

Note One might think that using double will increase the number of factorials we can represent. However, any factorial with
more than 16 significant digits will be rounded off, which actually happens at 23!. Multiple precision integers are the only option
for large and reliable factorials.

15.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why do lookup tables need to be defined as static?

2. Write a C function that uses a lookup table to return any integer power of 10 from exponents of 0 through 9. Justify your
choice of data type.

15.7 Pointer Arguments and const

Passing pointers, such as array names, to a function gives the function access to variables outside the function. This opens the
possibility of side effects, unintended modification of data by a function. Imagine how annoyed you would be if the variable



C/Unix Programmer’s Guide Lecture Outline and Addendum 156 / 255

angle were modified by the sin() function call below:

y = sin(angle);

The const modifier, in addition to being useful for defining constants, can be used to limit side effects on arguments.

The const modifier can appear in any of three positions in a pointer variable definition, two of which are equivalent. The key
to understanding the effect of const is reading the definition backwards, saying "pointer" for the ’*’:

// ages is a pointer to an int constant
// i.e., we can change the address, but we can’t change the int
void print_ages(const int *ages, size_t max_ages)

// ages is a pointer to a constant int (same as above)
void print_ages(int const *ages, size_t max_ages)

// ages is a constant pointer to an int
// i.e., we cannot change the address, but we can change the int
void print_ages(int * const ages, size_t max_ages)

// As an array, ages is a constant pointer to an int, the same as above
void print_ages(int ages[], size_t max_ages)

// ages is a constant pointer to an int constant
// i.e., we cannot change the address or the int
void print_ages(const int * const ages, size_t max_ages)

// ages is a constant pointer to an int constant (same as above)
void print_ages(const int ages[], size_t max_ages)

/*
* Here, we cannot change what string points to, nor can we change

* the characters in the array. Hence, we need a local pointer or

* subscript variable to traverse the string.

*/

size_t strlen(const char string[])

{
size_t length;
char *p;

p = string;
while ( *p++ != ’\0’ )

++length;

return length;
}

/*
* This function protects against side-effects on the string contents

* while allowing us to iterate without a second variable.

*/

size_t strlen(const char *p)

{
size_t length;

while ( *p++ != ’\0’ )
++length;
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return length;
}

Since p is the only variable in the function that ever addresses the array, we can define it as restrict to enable additional
optimizations. If you don’t fully understand this, don’t use restrict, as doing so will cause undefined behavior.

/*
* This function protects against side-effects on the string contents

* while allowing us to iterate without a second variable.

*/

size_t strlen(const char * restrict p)

{
size_t length;

while ( *p++ != ’\0’ )
++length;

return length;
}

15.7.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show a pointer variable definition equivalent to the following:

double vector[] = { 1.0, 2.0, 3.0 };

2. Write a C function that returns the average of the values in a vector. The array may or may not be full. Make sure the
function is incapable of causing side effects.

15.8 Multi-dimensional Arrays

Technically, C does not support multi-dimensional arrays. However, it supports arrays of arrays, which is the same thing.

double matrix[MAX_ROWS][MAX_COLS];

C is a row-major language, which means that elements of the same row (first subscript is the same) of a 2-dimensional array are
contiguous in memory:

// A 3 x 3 matrix in memory
1000 matrix[0][0]
1008 matrix[0][1]
1016 matrix[0][2]
1024 matrix[1][0]
1032 matrix[1][1]
1040 matrix[1][2]
1048 matrix[2][0]
1056 matrix[2][1]
1064 matrix[2][2]
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Access times to dynamic RAM (DRAM), such as DIMMs (dual inline memory modules) is complicated. One thing is certain,
however: Accessing addresses sequentially in increasing order is faster than jumping around to non-sequential addresses. As a
result, the first loop below is much faster than the second when large amounts of memory are used. ( If the matrix fits in cache,
we won’t see much difference, if any, since cache access times are constant, unlike DRAM. )

// Accesses memory addresses sequentially: 1000, 1008, 1016, ...
for (row = 0; row < rows; ++row)

for (col = 0; col < cols; ++col)
matrix[row][col] = some_value;

// Jumps around, e.g. 1000, 1024, 1048, 1008, 1032, ...
for (col = 0; col < cols; ++col)

for (row = 0; row < rows; ++row)
matrix[row][col] = some_value;

In contrast, Fortran is a column-major language.

When passing a 2-dimensional array to a function, we can omit the number of rows. The compiler need only know how many
columns are in each row in order to calculate where each row begins.

void print_matrix(double matrix[][MAX_COLS])

{
}

Caution
The amount of wasted address space is multiplied with each dimension in a fixed size array. E.g., a 1,000,000 element
1D array that contains only 10 elements wastes almost 1,000,000 elements. A 1,000,000 x 1,000,000 2D array that
contains a 10 x 10 matrix wastes almost 1,000,000 x 1,000,000 elements.
For this reason, it is even more advantageous to use dynamic memory allocation for multi-dimensional arrays.

15.8.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why don’t we need the first dimension of a 2-dimensional array in a formal argument?

15.9 Addendum: Performance and Portability

Any program can be made to work with any amount of RAM. This does not mean that it’s always practical, but it’s always
possible. Arrays should only be used to avoid accessing mass storage repeatedly. If data read from a file are only accessed once,
the program should not be using an array, list, vector, or any other dimensioned data structure. It only pays to load large amounts
of data into memory is it will be accessed repeatedly, i.e. the alternative it repeated disk access.

Increasing the memory use of programs also leads to slower memory access due to the memory hierarchy employed by modern
computers (covered in detail in a computer architecture course). On a typical PC, computer memory actually consists of a very
small amount of very fast memory (less than 1 nanosecond access time), called level 1 cache, a larger amount of somewhat
slower memory (level 2 cache), a still larger amount of even slower memory (level 3 cache), and a very large amount of very
slow memory (dozens of nanoseconds access time), called main memory.

On systems with virtual memory, programs that exceed the capacity of main memory will end up using swap space, a portion
of disk used to extend the apparent size of memory. Disk takes between 100,000 and 1,000,000 time as long to access as main
memory.
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Name Technology Typical size Access time
Registers Static RAM 256 bytes (32 words) 1 clock cycle
Level 1 cache Static RAM 4 MiB 1 to a few clock cycles
Level 2 cache Static RAM 16 MiB A few clock cycles
Level 3 cache Static RAM 256 MiB Several clock cycles
Main memory Dynamic RAM 16 GiB Dozens of clock cycles
Solid State Drive Flash RAM 1 terabyte Tens of microseconds
Magnetic disk Platters and moving heads 4 terabytes A few milliseconds
Magnetic tape Reel to reel tape Many terabytes Seconds to hours

Table 15.1: The Memory Hierarchy

The smaller the memory footprint of a program, the less often it has to use the slower memory levels. If the code and data fit
entirely in level 1 cache, then memory access speed is maximized.

The more memory a program uses, the slower the memory levels it must use. If all the data fit into the level 1 cache, average
memory access time is minimized.

Below is an excerpt from the output of MST-bench, a benchmark program that measures maximum sustainable throughput of
RAM and disk. Note how memory throughput for a small array is more than twice as fast as for a large array on the same
machine.

Filling a 256.00 KiB array 65536 times 8 bytes at a time...
256.00 KiB array 8.00 B blocks 772.00 ms 21222.80 MiB/s

Filling a 2.00 GiB array 8 times 8 bytes at a time...
2.00 GiB array 8.00 B blocks 1784.00 ms 9183.86 MiB/s

Consider the following Specification: Read a list of values from a file and display them on the screen. Don’t be tricked by the
word "list" in the specification into thinking this requires an array. Think carefully before you design and implement a solution.

// A clumsy design and implementation, using an array where it isn’t needed
// This drastically increases the memory requirements of the program
// and limits the list size to available memory. Increasing memory
// use also reduces cache hit ratio, so average memory access is slower.
// Total data memory used on a 64-bit CPU: Over 4 gigabytes
// Limit on list size: 1 billion elements

#define MAX_LIST_SIZE 1000000000

int list[MAX_LIST_SIZE]; // 4 gigabytes (1 billion x 32 bits)
size_t c, list_size; // 2 64-bit unsigned integers (16 bytes)

for (c = 0; (c < MAX_LIST_SIZE) && scanf("%d", &list[c]) == 1; ++c)
;

list_size = c;

for (c = 0; c < list_size; ++c)
printf("%d\n", list[c]);

// A smarter design and implementation that is both simpler and minimizes
// memory use.
// This will likely run entirely in cache memory, so memory throughput
// is maximized.
// Total data memory used on a 64-bit CPU: 12 bytes.
// Limit on list size: Disk capacity
// Note that this design also loops through the data only once,
// whereas the array version loops twice.

size_t c; // 64-bit (8-byte unsigned integer)
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int value; // 32-bit signed integer

for (c = 0; (c < MAX_LIST_SIZE) && scanf("%d", &value) == 1; ++c)
printf("%d\n", value);

As another example, adding two matrices stored in files can easily be done without arrays, reading one value from each file,
adding them, and immediately outputting the sum. Many people would be tempted to use 2-dimensional arrays for this problem.

Using arrays greatly increases the memory requirements for a program and also limits what the program can do based on available
memory. For example, a computer with 8 GiB of memory could not add matrices of more than about 333 million elements each,
using arrays of double, or 666 million using arrays of float. Using double, 333 million elements * 3 matrices (two sources
and one target) = 1 billion floating point values of 8 bytes each, or 8 gigabytes of memory. The same program without arrays can
handle matrices of any size and uses a trivial amount of RAM.

15.9.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How does the use of large arrays hurt program performance?

2. How does the unnecessary use of arrays limit the utility of programs?
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Chapter 16

Dynamic Memory Allocation

16.1 Dynamic Memory Allocation: malloc

Fixed size arrays are rarely full, and hence usually waste memory space. Dynamic memory allocation allows us to allocate
exactly the amount of memory needed, at run time.

Some people erroneously think this is no longer a concern, because modern systems use virtual memory, and hence "address space
is free". In virtual memory systems, programs allocate virtual addresses, which are arbitrarily mapped to physical addresses,
the actual addresses within RAM/ROM. On virtual memory systems, physical memory isn’t actually allocated until the virtual
address is "touched" (read or written). If you run the top command, you will see two memory size columns, shown as SIZE and
RES below. SIZE is the amount of virtual memory allocated, and RES is the amount of resident (physical) memory actually in
use.

PID USERNAME THR PRI NICE SIZE RES STATE C TIME WCPU COMMAND
9220 bacon 17 21 0 3604M 48M uwait 1 0:10 100.30% java

86829 root 7 20 0 322M 108M select 0 9:56 0.27% Xorg
7114 bacon 3 20 0 258M 86M select 0 0:31 0.18% coreterm

86857 bacon 5 20 0 533M 115M select 1 15:10 0.09% lumina-d
9221 bacon 1 20 0 14M 3356K CPU3 3 0:00 0.05% top

Hence, just allocating a huge array doesn’t necessarily use that much physical memory. With 264 virtual addresses available to
map to a much smaller physical memory, some programmers believe that we should feel free to allocate space with reckless
abandon and leave it to the virtual memory system to allocate the correct amount of physical memory.

There are two problems with this belief:

• Not all systems use virtual memory. Some or all of your code may be useful on small embedded systems, for example.

• When a system with virtual memory runs out of physical memory, it may crash or become unresponsive due to thrashing,
excessive swapping of memory pages to and from disk. Many systems (particularly shared systems) impose limits on virtual
memory allocation to protect themselves from memory leaks (bugs that that cause programs to allocate unlimited amounts of
memory), or malloc bombs, malicious programs that allocate massive amounts of memory to deliberately crash a system. The
latter is a type of denial of service attack.

Dynamic memory allocation allows a program to decide at run time how much memory to allocate, as opposed to fixed size
arrays where this decision is locked at compile time.

16.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.
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1. What is the advantage of dynamic memory allocation over fixed size arrays?

2. Is address space free?

16.2 Basic Usage

In C, all dynamic memory allocation is performed by malloc(), a standard library function, which manages blocks of memory
in the heap segment, rather than the stack segment used by auto variables.

The free() function is used to free memory allocated by malloc().

Caution The corresponding free() call should always be the next thing you write after adding a malloc(). Don’t
wait until after writing the intervening code. Adding the free() immediately will prevent memory leaks.

Some languages, like Java, have no equivalent to the free() function. Instead, they use a garbage collector, a complex system
designed to automatically determine when memory should be freed. Garbage collectors relieve the programmer of responsibility,
but generally result in higher memory use, since they have to be conservative to ensure that memory isn’t freed too soon.

Garbage collectors also introduce small, seemingly random delays into program execution when they kick in. This can be a
problem for real time applications which must respond to external events in a fast and predictable manner.

Caution The malloc() function allocates a specified number of bytes, not objects. The malloc() function returns
the address of the allocated memory, or NULL if the allocation failed. We must remember to multiply by the size of an
object, which is very easy to forget, often resulting in difficult debugging ventures due to an arrays that is too small.

We may forget to multiply by the size of the data type altogether. A simple solution to this problem is a wrapper function such
as xt_malloc(), part of the open source libxtend library.

#include <xtend/mem.h>

double *vector;
size_t vector_size;

// xt_malloc() takes the number of objects and the size of an
// object as separate arguments, so you will get a compiler error
// if you forget either one of them.
if ( (vector = xt_malloc(vector_size, sizeof(*vector))) == NULL )
{

fputs("Could not allocate memory for vector.\n", stderr);
exit(EX_UNAVAILABLE);

}

free(vector);

Or, just define our own macro:

#define SAFE_MALLOC(items, size_of_item) malloc((items) * (size_of_item))

We also must be careful to get the size of an object correct:
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// Prevent ourselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

void some_function()

{
double *vector;
size_t vector_size;

// Some code to determine vector_size

// Allocate the array
if ( (vector = SAFE_MALLOC(vector_size, sizeof(double))) == NULL )
{

fputs("Could not allocate memory for vector vector.\n", stderr);
exit(EX_UNAVAILABLE);

}

// Code that uses the vector

// Free allocated memory, don’t leak it
free(vector);

}

The above will work, but it contains a time bomb: What if we decide to change the data type of vector? We will need to
remember to update the double in the malloc() call as well, a nuisance that could easily be forgotten. This use of double
is like using a hard-coded constant instead of a named constant. This is an example of fragile code. There are simple solutions
to make this code more robust:

// Prevent ourselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

// Solution 1: typedef
// double is now hard-coded in only one place in the program
// We do not need to make multiple changes in sync to avoid
// regressions (new bugs)
typedef double real_t;

int main()

{
real_t *vector;
size_t vector_size;

if ( (vector = SAFE_MALLOC(vector_size, sizeof(real_t))) == NULL )
{

fputs("Could not allocate memory for vector.\n", stderr);
exit(EX_UNAVAILABLE);

}

free(vector);
...

}

// Prevent ourselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

// Solution 2: Use an object of the correct type, not the type name
int main()

{
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double *vector;
size_t vector_size;

// The sizeof() operator can take either a type or an object
// Use an object so the size is correct even if we change the type
// vector refers to an address and *vector refers to a double here
if ( (vector = SAFE_MALLOC(vector_size, sizeof(*vector))) == NULL )
{

fputs("Could not allocate memory for vector.\n", stderr);
exit(EX_UNAVAILABLE);

}

free(vector);
...

}

16.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. When should we add a free() call to a C program?

2. Describe one pro and one con of garbage collectors?

3. How do we ensure that the size portion of a malloc() argument is always correct?

4. How do we ensure that we don’t forget the size portion of a malloc() argument altogether?

16.3 How malloc() Keeps Track: Heap Tables

The malloc() and free() functions must keep track of all the blocks of the address space that are allocated or free. They
maintain a table of all allocated and free blocks, called the heap table. Programs that perform many small allocations, and
especially variable sized allocations, will create a highly fragmented heap.

The more fragmented the heap, the larger the heap table, and the more expensive malloc() and free() operations become.
There are many implementations of malloc() libraries that attempt to maximize performance. Some developers even choose
specific malloc() libraries for specific applications.

Linked data structures such as linked lists and trees cause such heap fragmentation. If there is an alternative implementation that
uses a simple array rather than a linked structure, it will likely lead to less memory management overhead.

If we don’t know the size of a list before reading it, we can make a guess and then adjust it along the way using realloc(),
which changes the size of a block allocated by malloc(). Using realloc() is expensive in that it may have to move all
the data to a new location, so it should be used as few times as possible. It does avoid heap fragmentation better than linked
structures, though.

// Prevent ourselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

#define INITIAL_ARRAY_SIZE 1000

int main()

{
double *ages;
size_t ages_count, ages_array_size;
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ages_array_size = INITIAL_ARRAY_SIZE; // Guess
ages_count = 0;
if ( (ages = SAFE_MALLOC(ages_array_size, sizeof(*ages))) == NULL )
{

fputs("Could not allocate memory for ages list.\n", stderr);
exit(EX_UNAVAILABLE);

}

while ( scanf("%lf", &ages[ages_count]) == 1 )
{

if ( ++ages_count == ages_array_size )
{

// Minimize the number of reallocs by increasing the
// array size exponentially rather than incrementally
ages_array_size *= 2;
if ( (ages = realloc(ages, ages_array_size * sizeof(*ages))) == NULL )
{

fputs("realloc() failed.\n", stderr);
exit(EX_UNAVAILABLE);

}
}

}

// Trim back the allocation to the actual list size
ages = realloc(ages, ages_count * sizeof(*ages));

free(ages);

...
}

16.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do we avoid a fragmented heap table and the associated performance hit?

2. How to we minimize the expense of realloc() calls?

16.4 Pointer Arrays

A pointer array is an array of pointers (addresses). It is one of the most ubiquitous data structures in systems programming.
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Pointers                         Data

Unused

Unused

Figure 16.1: Pointer Array

Pointer arrays provide the same memory savings as a linear linked list, without sacrificing random access. Linked lists must be
traversed from the beginning, while we can access any element of a pointer array instantly.

Linked list:

+-------------+ +-------------+
head -> | data | next | -> | data | next | -> NULL

+-------------+ +-------------+

16.4.1 Pointer Arrays and Matrices

A pointer array is a convenient way to store a matrix using near-minimal memory. Some of the pointers may be unused, but this
is a trivial amount of memory compared to the unused space is a fixed 2D array.

The array of pointers itself may have a fixed size:

// A matrix with a fixed limit on rows, but no limit on columns
double *matrix[MAX_ROWS];

Or it may be dynamically allocated:

// Prevent ourselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

void some_function()

{
double **matrix;

// Allocate an array of rows pointers to doubles
// Note that *matrix is a pointer, **matrix is a double
if ( (matrix = SAFE_MALLOC(rows, sizeof(*matrix))) == NULL )
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{
// Print error and exit

}

// Code to work with the matrix

free(matrix);
}

In either case, we must allocate each row:

// Prevent ourselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

void some_function()

{
double **matrix;

// Allocate an array of pointers to doubles, one for each row
// Note that *matrix is a pointer, **matrix is a double
if ( (matrix = SAFE_MALLOC(rows, sizeof(*matrix))) == NULL )
{

// Print error and exit
}

// Allocate an array of doubles for each row (array size = # columns)
for (row = 0; row < rows; ++row)
{

// Allocate an array of cols doubles (not pointers)
if ( (matrix[row] = SAFE_MALLOC(cols, sizeof(**matrix))) == NULL )
{

// Print error and exit
}

for (col = 0; col < cols; ++col)
{

// Note that we can subscript a pointer array exactly
// the same way as a 2D array
// (e.g. double matrix[MAX_ROWS][MAX_COLS])
// because pointers and array names are interchangeable
if ( scanf("%lf", &matrix[row][col]) != 1 )
{

// Print error and exit
}

}
}

}

To free a pointer array, we first free each array member, and then free the pointer array itself (if it was allocated).

void some_function()

{
// Code above

// Free the matrix
// Must free each row first, before we free the pointer to it
for (row = 0; row < rows; ++row)
{

free(matrix[row]);
}
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free(matrix);
}

A 10000 x 10000 fixed size array of doubles would require 800 megabytes of memory (10000 * 10000 * 8). If the matrix
contained in the array is only 100 x 100, then only 80 KB are used and 799.92 MB are wasted.

The pointer array on a 64-bit computer uses 80 kilobytes (10000 * 8) bytes for the pointers in addition to the data for the pointers,
so 800.01 MB total for a 10000 x 10000 matrix. For a 100 x 100 matrix, it will use 80 KB + 100 * 100 * 8 = 80.01 KB.

Note
A huge advantage of pointer arrays is that we can swap rows of the matrix (or any other pointer array) without moving any data.
With a fixed size 2D array, swapping rows would require moving all the data + allocating a temporary array for one row:

real_t matrix[MAX_ROWS][MAX_COLS], temp[MAX_COLS];

// Swap rows r1 and r2 using a loop
// cols contains the actual number of cols in a row
// so we don’t waste time going all the way to MAX_COLS
for (c = 0; c < cols; ++c)
{

temp[c] = matrix[r1][c];
matrix[r1][c] = matrix[r2][c];
matrix[r2][c] = temp[c];

}

// Swap rows r1 and r2 using memcpy(), may be faster due to
// CPU-specific optimizations used by memcpy()
memcpy(temp,mat[r1],cols*sizeof(real_t));
memcpy(mat[r1],mat[r2],cols*sizeof(real_t));
memcpy(mat[r2],temp,cols*sizeof(real_t));

To swap rows in a pointer array, we just swap the pointers to each row. No loops required, so this is an O(1) operation.

double **matrix, *temp;

...

// Only swaps two addresses, no data, no loop
// I.e. this is a scalar operation
// Roughly (cols + loop_overhead) times faster than swaps above
// E.g. if cols == 1000, this is more than 1000 times faster
temp = mat[r1];
mat[r1] = mat[r2];
mat[r2] = temp;

16.4.2 Pointer Arrays and Strings

Arrays of strings are usually implemented as pointer arrays in C. This minimizes memory waste, especially given that strings
tend to be highly variable in length.

The same memory and time savings apply as with matrices and other pointer arrays.

// An array of names, + 1 to make room for the null terminator
char names[MAX_NAMES][MAX_NAME_LEN + 1],

temp[MAX_NAME_LEN + 1];
size_t c1, c2;

...
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// Swap two strings
// This is expensive, because strlcpy() uses a loop to copy
// character-by-character
strlcpy(temp, names[c1], MAX_NAME_LEN + 1);
strlcpy(names[c1], names[c2], MAX_NAME_LEN + 1);
strlcpy(names[c2], temp, MAX_NAME_LEN + 1);

char *names[MAX_NAMES], // Or char **names followed by malloc()

*temp;
size_t c1, c2;

...

// Swapping strings in a pointer array is a scalar operation, no loops
temp = names[c1]; // Just copying an address
names[c1] = names[c2];
names[c2] = temp;

16.4.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are two advantages of pointer arrays over fixed size 2 dimensional arrays?

16.5 Command-line Arguments: argc and argv

The main() function of a C program actually receives three arguments from the caller.

int main(int argc, char *argv[], char *envp[])

{
...

}

We can define main() with no arguments, the first two, or all three. The first two provide access to command-line arguments
from the shell, or may be passed by a non-shell program in different ways. The third provides access to the environment inherited
from the parent process and is covered in the next section.

Consider the command cc -Wall -O prog.c.

As a C program, cc receives the arguments as follows:
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cc\0

argv[0]

argv[2]

argv[3]

NULL

argv[1]

−Wall\0 −O3\0 prog.c\0\0

Figure 16.2: Arguments to cc

The value of argc is the number of command-line items, including the program name. The first element of the pointer array
argv, argv[0], is the name of the command as it was invoked. Some Unix commands have multiple names. For example, fgrep
and egrep are links to grep. Running fgrep is the same as running grep -F and egrep is the same as grep -E.

We can easily process command-line arguments in a C program:

#include <stdio.h>
#include <sysexits.h>

int main(int argc,char *argv[])

{
size_t c;

printf("argc = %d\n", argc);
for (c = 0; c < argc; ++c)

printf("argv[%zu] = %s\n", c, argv[c]);

return EX_OK;
}

shell-prompt: cc -O -Wall print-args.c -o print-args

shell-prompt: ./print-args Hi, Bob.
argc = 3
argv[0] = /home/bacon/print-args
argv[1] = Hi,
argv[2] = Bob.

16.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is argc?

2. What is argv[0] and how is it used?
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16.6 The Environment: envp

The envp pointer array is structured the same way as argv, but each array element points to a string of the form "name=value",
e.g. "TERM=xterm".

We can use envp to implement a simplified version of the standard Unix printenv command:

#include <stdio.h>
#include <sysexits.h>

int main(int argc,char *argv[], char *envp[])

{
size_t c;

for (c = 0; envp[c] != NULL; ++c)
puts(envp[c]);

return EX_OK;
}

#include <stdio.h>
#include <sysexits.h>

int main(int argc,char *argv[], char *envp[])

{
char **p; // A pointer to one of the pointers in the envp array

for (p = envp; *p != NULL; ++p)
puts(*p);

return EX_OK;
}

shell-prompt: cc -O -Wall printenv.c -o printenv
shell-prompt: ./printenv
BLOCKSIZE=K
COLORFGBG=15;0
COLORTERM=xterm-256color
DESKTOP_SESSION=Lumina
DISPLAY=:0
HOME=/home/bacon
LANG=C.UTF-8
...

16.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is an alternative to using envp in a C program?
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Chapter 17

Advanced: Function Pointers

Skip for now. Will come back to it if time permits.

17.1 Simple Function Pointers

17.2 Function Pointer Tables
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Chapter 18

Structures and Unions

18.1 Structures

18.1.1 Structure Templates

Arrays bundle multiple objects of the same type. Structures bundle multiple objects of different types.

Structures are the ancestors of classes in object-oriented languages. A structure is like a class that has only data members, no
function/method members. Structures can be easily used to implement object-oriented designs nonetheless.

Structure Templates

Structure templates define the members of a structure type. Below is a typical structure template embedded in a typedef.

// Enumerated types are integers with a limited set of named values
// The first has a value of 0 by default
typedef enum { UNDEFINED, RED, BLUE, WHITE, BLACK, CHARCOAL } color_t;
typedef enum { UNDEFINED, GAS, DIESEL, ELECTRIC } motor_t;
typedef enum { UNDEFINED, AUTOMATIC, MANUAL, NONE } transmission_t;

// Structure templates are usually associated with typedefs
typedef struct
{

char make[MAKE_MAX_CHAR + 1];
char model[MODEL_MAX_CHARS + 1];
color_t color;
motor_t motor;
transmission_t transmission;
double sticker_price;
unsigned days_on_lot;

} car_t;

int main()

{
car_t car1;

...

// Note: Accessing structure members from main()
// is not object-oriented programming.
printf("Car #1 price = %f\n", car1.sticker_price);
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return EX_OK;
}

Note Addendum: To adhere to object oriented design principals, we can treat structures like classes, and designate certain
functions as member functions. Only member functions should access structure members directly. C has no "private" modifier
to enforce this. It is generally up to the programmer to use self-discipline.

The structure binding operator, ., has the highest precedence of any operator, so the following are equivalent:

// These are equivalent
++car1.days_on_lot; // Increments days_on_lot
++(car1.days_on_lot);

// These are all equivalent, referring to the first character of model
first_initial = car1.model[0];
first_initial = (car1.model)[0];
first_initial = *car1.model; // Dereferences model, not car1
first_initial = *(car1.model);

// This one is different: It dereferences car1, not model
// This implies that car1 is a pointer, not a structure
// The () override the precedence of . over *
model = (*car1).model;

18.1.2 K & R Structure Tags

The original C language that preceded ANSI and ISO standards is referred to as K & R (Kernighan and Ritchie) C. It originally
did not support typedef.

We can also define a structure "type" without a typedef. Such structure tags are still used sometimes.

// car is a structure "tag", not a type
// It must ALWAYS be preceded by the word "struct"
struct car
{

char make[MAKE_MAX_CHAR + 1];
char model[MODEL_MAX_CHARS + 1];
color_t color;
motor_t motor;
transmission_t transmission;
double sticker_price;
unsigned days_on_lot;

};

int main()

{
struct car car1, car2;

...
}

18.1.3 Copying Structures

Modern C standards allow entire structures to be copied in a simple assignment:



C/Unix Programmer’s Guide Lecture Outline and Addendum 175 / 255

car_t car1, car2;

car1 = car2; // Copies the whole structure

// Equivalent to
memcpy(&car1, &car2, sizeof(car_t));

This should generally be avoided, except in rare circumstances. We should almost never duplicate aggregate objects, as this is
expensive in terms of both CPU cycles and memory use. It requires a loop at the machine code level.

Also, if the structure contains any pointers, only the address in the pointer member is copied, and the new structure will point
to the same object as the original. To fully duplicate a structure with pointers, it is best to write a function that duplicates any
allocated objects to which the structure points.

18.1.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How are structures related to classes?

2. Show a type definition for a structure containing a person’s first name, last name, and age.

3. Can whole structure objects be assigned in C?

18.2 Pointers to Structures

Most structure access is actually done through pointers to the structures.

car_t car1, *car_ptr;

car_ptr = &car1;

Because the structure binding operator, . has a higher precedence than the dereference operator, *, using structure pointers with
. is untidy:

// This is an error, since it tries to dereference a non-pointer,
// days_on_lot, rather than car_ptr. Furthermore, car_ptr is an
// address of a structure, not a structure, so ’.’ cannot be used with it.
languished = *car_ptr.days_on_lot;

// It is equivalent to
languished = *(car_ptr.days_on_lot);

// What we actually need
languished = (*car_ptr).days_on_lot;

// The above is untidy, so C provides a separate operator for
// structure POINTER binding
languished = car_ptr->days_on_lot; // Same as (*car_ptr).days_on_lot;

18.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is an advantage to using pointers to structures rather than structure objects directly?
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18.3 Structures, Functions, and OOP

ANSI/ISO C allows us to copy structures and also to pass structure objects to a function by value. This is inefficient and should
be avoided. It is much faster to pass a pointer to a structure, since a memory address is a scalar value, while a structure object is
an aggregate, which will require multiple machine instructions to copy (probably a loop), in addition to requiring more memory.

C does not provide syntactic features to encapsulate data and the functions that operate on them. This does not prevent us from
using object-oriented design in C, however. We can separate member functions of a class by simply using self-discipline. Only
member functions should access members of a structure used to implement a class.

Note To implement an object oriented design in C, follow one simple rule: Any given function should only access members of
one structure type. This means the function is a member of that class and no others. The C compiler won’t enforce this for you.
It’s up to you to be self-disciplined.

We can keep member functions in a separate source file and prefix their names with the class name. We can also use macros for
simple member functions in order to separate interface from implementation without the cost of function call overhead.

/*
* car.h

*/

typedef struct
{

...
} car_t;

// Accessor macro
#define CAR_GET_COLOR(car) ((car)->color)

// Mutator macro
#define CAR_SET_COLOR(car, color) ((car)->color = (color))

/*
* car.c

*/

#include "car.h"

// Equivalent to a constructor in C or Java
// Like car :: init() in a C++ class

void car_init(car_t *car)

{
car->color = UNDEFINED;
...

}

// Mutator function
// Like car :: set_color() in a C++ class

void car_set_color(car_t *car, color_t color)

{
car->color = color;

}
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void car_print(car_t *car)

{
...

}

int car_read(car_t *car)

{
int status;

...

return status;
}

/*
* main.c

*/

#include "car.h"

int main()

{
car_t car1, car2;

car_init(&car1); // Like car1.init() in C++
CAR_SET_COLOR(&car1, BLUE);
...

}

18.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What rule must we follow in order to implement a class in C?

2. Show a mutator function that sets the age field in the following structure.

typedef struct
{

char *first_name;
char *last_name;
int age;

} person_t;

18.4 Nesting Structures

Structure members can be structures themselves. This enables different kinds of structures to share some common members, a
simple form of inheritance.
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// Features common to all kinds of vehicles
typedef struct
{

char make[MAKE_MAX_CHAR + 1];
char model[MODEL_MAX_CHARS + 1];
color_t color;
motor_t motor;
transmission_t transmission;
double sticker_price;
unsigned days_on_lot;

} vehicle_t;

typedef struct
{

vehicle_t vehicle;

// Only cars have spoilers and retractable headlights
bool spoiler;
bool retractable_headlights;

} car_t;

typedef struct
{

vehicle_t vehicle;

// Only trucks have bed liners and gates
bool bedliner;
bool lift_gate;

} truck_t;

void vehicle_set_color(vehicle_t *vehicle, color_t color)

{
vehicle->color = color;

}

void car_set_color(car_t *car, color_t color)

{
// car->vehicle.color = color; would be legal in C, but would
// not be object-oriented programming, since a car function would
// be directly accessing a data member of the vehicle structure (class)
// I.e. it would violate the core OOP principal of encapsulation.

vehicle_set_color(&car->vehicle, color);
}

18.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How can two different structures share common fields?

2. Show a structure definition for a mammal containing a Boolean field furry and a nested structure containing fields
average_weight and average_lifespan, which can be shared with structures for reptiles, birds, fish, etc.
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18.5 Lists of Structures

18.5.1 Arrays of Structures

Fixed size arrays of structure objects suffer from the same issue as other fixed size arrays: Wasted space when the array is not
fully utilized (which is most of the time).

The problem is worse with structures, since they are larger objects than scalar data types. Hence, fixed arrays of structures should
be avoided.

int main()

{
// Lots of memory is wasted when the list contained in the
// cars array is smaller than MAX_CARS
car_t cars[MAX_CARS];

...
}

// Prevent outselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

int main()

{
// Dynamic allocation of the array avoids wasted memory
car_t *cars;
size_t actual_cars;

...

if ( (cars = SAFE_MALLOC(actual_cars, sizeof(car_t))) == NULL )
{

// Error out
}
...

}

18.5.2 Linked Lists

Linked lists, including linear linked lists and trees, allow us to allocate one object at a time.

Linear linked lists are time-inefficient compared to arrays, since linked lists can only be accessed sequentially. This defeats the
purpose of storing data in random access memory.

When defining a type implementing a linked list with typedef, we have a syntactic problem:

typedef struct
{

int x;
int y;
linked_t *next; // Oops, linked_t is not defined yet!

} linked_t;

The above definition won’t work, because linked_t is used before it is defined. This is called a forward reference, which is
not allowed in C. This is the same reason we need prototypes for functions. To solve this, C allows us to assign a type name to a
structure tag before the structure is defined.
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typedef struct linked linked_t;

struct linked
{

int x;
int y;
linked_t *next; // "struct linked *next;" will work as well

};

18.5.3 Pointer Arrays of Structures

Pointer arrays provide the same memory savings as linear linked lists, without sacrificing random access.

// Prevent outselves from forgetting either size of # items
#define SAFE_MALLOC(items, size) malloc(items * size)

int main()

{
car_t **cars, temp_car;
size_t actual_cars;

// Determine actual_cars somehow

// First allocate an array of pointers
if ( (cars = SAFE_MALLOC(actual_cars, sizeof(car_t *))) == NULL )
{

// Error out
}

// Assume car_read() is a member function that inputs a car structure
for (actual_cars = 0; car_read(&temp_car) != EOF; ++actual_cars)
{

if ( (cars[actual_cars] = SAFE_MALLOC(1, sizeof(car_t)) == NULL )
{

// Error out
}

// Structure copy is expensive, but it’s only once per
// car during input
cars[c] = temp;

}
...

}

Also note that we can swap two pointers in the array much faster than we can swap two whole structure objects, as with matrices
or strings.

18.5.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the problem with fixed size arrays of structures?

2. What is the down side of linear linked lists?
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3. How can we get the memory savings of a linear linked list without sacrificing random access?

4. What is a major advantage of pointer arrays over arrays of structures?

18.6 Initializing Structures

Structure initializers look like array initializers, a list of values in curly braces.

When using structure initializers, it’s a good idea to define them as a macro, so that changes only need to occur in one place and
the code is less cluttered.

#define CAR_INIT_UNKNOWN \
{ "", "", UNDEFINED, UNDEFINED, UNDEFINED, 0.0, 0 }

#define CAR_INIT_HIGHLANDER \
{ "Toyota", "Highlander", WHITE, GAS, AUTOMATIC, 40000.0 }

#define CAR_INIT_LEAF \
{ "Nissan", "Leaf", WHITE, ELECTRIC, NONE, 30000.0 }

int main()

{
car_t car1 = CAR_INIT_UNKNOWN;
car_t car2 = CAT_INIT_HIGHLANDER;
car_t car3 = CAT_INIT_LEAF;
car_t car4 = CAT_INIT_LEAF;

...
}

18.6.1 Addendum: Designated Structure Initializers (C99)

Traditional structure initializers are a bit hard to read and error-prone. We must carefully count the values and make sure they
align with the appropriate structure member.

typedef struct
{

int x;
int y;
int z;

} struct_t;

int main()

{
struct_t object = { 1, 2, 3 };

...
}

Worse yet, if we rearrange the structure members and forget to rearrange all the initializers at the same time, we have introduced
a regression, a new bug that did not exist before.

Designated structure initializers solve this problem by naming the structure members in the initializer:

struct_t object = { .x = 1, .y = 2, .z = 3 };

Of course, another solution is to use a constructor function:



C/Unix Programmer’s Guide Lecture Outline and Addendum 182 / 255

void struct_init(struct_t *object)

{
object->x = 1;
object->y = 2;
object->z = 3;

}

18.6.2 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What are two advantages of using a macro to initialize a structure?

2. How does a designated structure initializer avoid bugs?

18.7 Advanced: Unions

A union looks much like a structure at the source code level, but serves a very different purpose.

Structure members coexist next to each other within a structure object.

Union members, in contrast, cannot coexist. They occupy the same memory space. Hence, only one member of a union can be in
use at any given time. A union assigns multiple names and data types to the same memory location.

18.7.1 Unions for Subdividing Objects

A union can be used to access smaller components of a larger object:

// bigint and bytes are two names for the same memory address
typedef union
{

uint32_t bigint;
char bytes[4];

} split_t;

int main()

{
split_t split;

...
}

The member bytes[0] refers to the first byte of the integer bigint. Assuming the variable split resides at address 1000:

1000 split.bigint split.bytes[0]
1001 split.bigint split.bytes[1]
1002 split.bigint split.bytes[2]
1003 split.bigint split.bytes[3]

The main problem here is that the order of the bytes of bigint is endian-dependent. On a little-endian CPU, the lowest byte of
bigint will be at address 1000, while on a big-endian machine it will be at 1003.

If we specifically want the low byte of a larger integer, we should use a bitwise operator and a mask:
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char low_byte;
uint64_t bigint;

low_byte = bigint & 0x000000ff; // Get the lowest byte from bigint
low_byte = bigint & 0x0000ff00; // Get the second lowest byte from bigint

18.7.2 Unions for Conserving Memory

Sometimes, two members of a structure are not useful at the same time.

typedef struct
{

char make[MAKE_MAX_CHAR + 1];
char model[MODEL_MAX_CHARS + 1];
color_t color;
motor_t motor;
transmission_t transmission;
double sticker_price;
unsigned days_on_lot;
bool lift_gate; // Only for trucks
bool spoiler; // Only for cars

} vehicle_t;

typedef struct
{

char make[MAKE_MAX_CHAR + 1];
char model[MODEL_MAX_CHARS + 1];
color_t color;
motor_t motor;
transmission_t transmission;
double sticker_price;
unsigned days_on_lot;

// lift_gate and spoiler are two names for the same memory location
// This saves memory since only one of them can be used anyway
union
{

bool lift_gate; // Only for trucks
bool spoiler; // Only for cars

} vehicle_specific;
} vehicle_t;

The nuisance here is that the union members require an extra tag:

vehicle.color = BLUE;
vehicle.vehicle_specific.lift_gate = true;

To eliminate this nuisance, C allows for anonymous unions, i.e. unions within a structure that have no name.

typedef struct
{

char make[MAKE_MAX_CHAR + 1];
char model[MODEL_MAX_CHARS + 1];
color_t color;
motor_t motor;
transmission_t transmission;
double sticker_price;
unsigned days_on_lot;
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// This union has no name, so lift_gate and spoiler appear to
// be directly members of vehicle_t.
union
{

bool lift_gate; // Only for trucks
bool spoiler; // Only for cars

};
} vehicle_t;

vehicle.color = BLUE;
vehicle.lift_gate = true;

18.7.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the difference between a structure and a union?

2. What is the problem with using a union to address individual bytes of an integer? What is the solution?

18.8 Advanced: Structure Alignment

Note Material from this section to the end of the chapter is optional. Instructors may or may not include it.

Some CPU architectures require that objects larger than a byte be aligned at certain memory addresses. E.g., a 32-bit integer
might have to reside at an address that is a multiple of 4. Others may allow such objects to reside anywhere (unaligned), but
access will be faster if they are aligned properly. E.g. reading a 32-bit integer at address 1002 might mean reading two 32-bit
integers at 1000 and 1004 and only keeping the bytes from 1002, 1003, 1004, and 1005. Alignment requirements are very
CPU-specific.

Because of this, structure members may need to be aligned either for basic functionality or for efficiency. This may involve
inserting unused "padding" space between members:

typedef struct
{

short x;
long y;

} some_struct_t;

1000 x
1001 x
1002 padding
1003 padding
1004 y // y must be aligned for optimal performance
1005 y
1006 y
1007 y

If a program writes structures in binary form, then we must ensure that the order of the members and the padding are the same on
all systems. Be aware that compilers may reorder members to reduce the need for padding and optimize alignment of members.
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18.9 Advanced: Bit Fields

Structure members, unlike standalone variables, can occupy less than 1 byte. This may be useful for saving memory where a
large array of structures is used, for example.

The total memory used by a group of bit fields is determined by the type of the member:

// sizeof(bits_t) = 2, since the bits fields are part of an
// unsigned short. Only 12 of the 16 bits are actually used.
typedef struct
{

unsigned short a : 4;
unsigned short b : 3;
unsigned short c : 5;

} bits_t;

18.10 Addendum: Advanced: Enforcing OOP in C, Opaque Structures

One option for OOP in C is to expose the entire structure definition to all code and simply expect discipline on the part of
programmers using the class. If they directly access structure members from nonmember functions and the code breaks when we
change the structure, it’s their own fault.

// Header containing structure definition and type definition
// Included by application source files, so the structure
// members are visible (the structure is transparent)
typedef struct
{

int a;
int b;

} class_t;

// Prototypes for member functions
// Users of the class must choose to use these API functions instead
// of accessing a and b directly from nonmember functions
void class_init(class_t *class);
...

// Source file outside class
// struct my_class is not exposed in this source file since it
// does not include private-my-class.h.

#include <my-class.h>

int main()

{
class_t object;

object.a = 4; // This is not OOP, but it is legal
// We should only access structure members
// directly in member functions

class_set_a(&object, 4); // This is the proper way for a non-member
// function to set a, using the mutator

...
}
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As a service to users of the class, we can simulate the private data members of C++ and Java classes by making a structure
opaque to source code outside the class while keeping it transparent to member functions (member functions can see inside it).

This simply means that we only expose the complete structure definition to member functions. Opaque structures can be created
in C using a loophole regarding structure types. Recall from Section 18.5.2 that C allows us to use typedef on a structure
definition with a tag, even if the structure is not yet defined.

We can use this to hide a structure definition from nonmember functions, while exposing it to member functions. We use two
separate header files, one which includes API (Application Program Interface, the public function prototypes) and is included by
files outside the class, and one with the private structure definition, which is only included by files defining member functions.
Hence, the structure definition is opaque (invisible) to non-member functions, and they therefore cannot access the data members
directly. They are forced to use the API provided by member functions, just like non-member functions in C++ or Java (that are
not "friends").

This means that non-member functions cannot even define a variable of the structure type. Since the size of the structure is not
known, the compiler cannot generate code to allocate the proper amount of memory. Non-member functions can, however, define
pointers to the structure type, since the size of a pointer is the same for all data types.

/*
* Public API for class_t. This header is installed with the library

* to expose the API to applications using the class library.

*/

// Typedef declaring structure type without exposing the structure
typedef struct class class_t;

// Constructors
class_t *class_init_0(void);
class_t *class_init_ab(int a, int b);

// Input object
int class_read(class_t *class_ptr, FILE *stream);

// Output entire object
void class_write(class_t *class_ptr, FILE *stream);

/*
* This header is only exposed to class members. It is not installed with

* the library, so that the structure definition is not exposed to

* applications using the class and is completely opaque to them.

* They must use the API functions prototyped in api.h to maniulate

* objects of this class.

*/

struct class
{

int a;
int b;

};

/*
* C file containing definitions of class member functions.

* This file includes "class.h", a private header file containing

* the structure definition. This file is not installed, so the

* structure is opaque to applications using this class library.

*/

#include <stdio.h>
#include <stdlib.h>
#include "class.h"
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#include "api.h"

/*
* Constructors

*/

class_t *class_init_0()

{
class_t *temp = malloc(sizeof(class_t));
temp->a = 0;
temp->b = 0;

return temp;
}

class_t *class_init_ab(int a, int b)

{
class_t *temp = malloc(sizeof(class_t));
temp->a = a;
temp->b = b;

return temp;
}

/*
* Input entire object

*/

int class_read(class_t *class_ptr, FILE *stream)

{
return fscanf(stream, "%d %d", &class_ptr->a, &class_ptr->b);

}

/*
* Output entire object

*/

void class_write(class_t *class_ptr, FILE *stream)

{
fprintf(stream, "a = %d b = %d\n", class_ptr->a, class_ptr->b);

}

/*
* Test program for the class library. Note that it does not include

* class.h, the private header file containing the structure definition.

* It only uses api.h, which exposes the class API.

*/

#include <stdio.h>
#include <sysexits.h>
#include <stdlib.h>
#include "api.h"

int main(int argc,char *argv[])
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{
class_t *object = class_init_ab(1, 2);

class_write(object, stdout);
fputs("Enter integers a and b: ", stdout);
class_read(object, stdin);
class_write(object, stdout);

return EX_OK;
}

############################################################################
# Makefile to build and install the class library.
# Also builds a test program, oopc-test.
############################################################################

############################################################################
# Installed targets

BIN = oopc-test
LIB = libclass.a

############################################################################
# List object files that comprise BIN and LIB.

BIN_OBJS = oopc-test.o
LIB_OBJS = class.o

############################################################################
# Compile, link, and install options

PREFIX ?= ../local

# Defaults that should work with GCC and Clang.
CC ?= cc
CFLAGS ?= -Wall -g -O
LD = ${CC}
LDFLAGS += -L. -lclass

AR ?= ar
RANLIB ?= ranlib

MKDIR ?= mkdir
RM ?= rm
INSTALL ?= install

############################################################################
# Standard targets required by package managers

.PHONY: all depend clean install

all: ${BIN} ${LIB}

${BIN}: ${BIN_OBJS} ${LIB}
${LD} -o ${BIN} ${BIN_OBJS} ${LDFLAGS}

${LIB}: ${LIB_OBJS}
${AR} r ${LIB} ${LIB_OBJS}
${RANLIB} ${LIB}
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class.o: class.c class.h api.h
${CC} -c ${CFLAGS} class.c

oopc-test.o: oopc-test.c api.h
${CC} -c ${CFLAGS} oopc-test.c

############################################################################
# Remove generated files (objs and nroff output from man pages)

clean:
rm -f *.o ${BIN} ${LIB}

############################################################################
# Install all target files (binaries, libraries, docs, etc.)
# Do not install class.h, which is not meant to be exposed to applications.

install: all
${MKDIR} -p ${DESTDIR}${PREFIX}/include ${DESTDIR}${PREFIX}/lib
${INSTALL} -s -m 0755 ${BIN} ${DESTDIR}${PREFIX}/bin
${INSTALL} -m 0644 api.h ${DESTDIR}${PREFIX}/include
${INSTALL} -m 0644 ${LIB} ${DESTDIR}${PREFIX}/lib

test: ${BIN}
./oopc-test

Note that this precludes the use of macros as accessor functions, since a macro would expand to code that directly accesses the
structure members, which are not visible to the code using the macro. Functions can be used and should serve the same purpose,
though with a little added overhead. C function call overhead is very low.

18.11 Addendum: Advanced: Flexible Array Members (C99)

Skip for now, not often useful.

18.12 Addendum: Advanced: void pointers

Sometimes we may want to pass different kinds of structures to a function, depending on the data. This is useful for things like
plugins, functions that are compiled separately from the program and linked conditionally at runtime using dlopen(). Plugins
may be very different from each other, but nevertheless must have the same function interface.

An argument of type void * accepts a pointer to any data type. This allows the two functions below to receive different kinds of
data through a common interface. The data argument can point to literally anything, a character string, an integer, any structure
type, etc.

int plugin1(int fd, unsigned mask, void *data);
int plugin2(int fd, unsigned mask, void *data);

Many standard library functions involved in systems programming use void pointers.
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Chapter 19

Debugging

This chapter will be covered very quickly. Students need only have awareness of debuggers like gdb and lldb and their basic use.

19.1 Thinkin’ it Through

There are a few different ways to track down bugs in a program, including reading the code carefully, adding debug statements,
and using a debugger, a tool specifically designed to aid in debugging other programs.

Caution Don’t become dependent on debuggers. Avoid creating bugs in the first place. Catch bugs early by testing
after every few lines of new code are added. Learn to read your code and understand what it’s doing. This skill is
far more valuable than knowing how to use a debugger. Cliche’, but true: An ounce of prevention is worth a pound of
cure.

However, even if you program intelligently 100% of the time, you will sometimes have to debug code that others wrote, or that
you wrote long ago, before you were so wise. So, debuggers will be indispensable at times.

Note If a bug occurs and the problem is not obvious, first focus on determining where the problem is. This is usually quite easy,
and once you determine where the faulty code is, it’s usually not hard to see what the problem is and how to correct it.

19.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do we avoid the need for a debugger?

2. What is the first step in correcting a bug?

19.2 Making Programs Talk: Debug Code

Caveman debugging was introduced in Section 7.5. It involves adding print statements to your code that display intermediate
results, so you can follow the progress of the program on the screen. As stated earlier, these messages should go to stderr,
rather than stdout.
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The stdout stream is buffered by default, so if your program crashes, some of the debug output may die in an output buffer,
never reaching the screen. This will mislead you to believe that the program never made it to that debug statement.

Debug output needs to be disabled when it is no longer needed. We may want to simply remove the statements, or we may want
to leave them intact in case we need them again. The latter can be done in 3 ways:

• Comment it out.

// fprintf(stderr, "Done with loop. sum = %d\n", sum);

• Mask (guard) it with an if statement. This has a small cost at run time, but allows debugging to be enabled or disabled
without recompiling the program. Many programs accept a flag argument such as --debug to allow the user to easily enable
debugging statements. Often, multiple different debugging levels are supported to make the debug output more or less verbose.

/*
* An exception to the no global variables rule, since it is used

* more like a constant. It is set only at program startup, and

* read-only after that, so functions cannot cause side effects

* on each other. Capitalized to make it clear that it is global.

* (I use all lower case for locals, capitalize globals, and use all

* upper case for macros.)

*/

bool Debug = 0;

void some_function()

{
// Higher debugging level
if ( Debug > 1 )

fputs("Entered some_function().\n", stderr);
...

// Lowest debugging level
if ( Debug > 0 )

fprintf(stderr, "Done with loop. sum = %d\n", sum);
...

}

• Mask (guard) it with a preprocessor directive. The preprocessor completely removes the debug code before compilation, so
there is no run time overhead. However, we must recompile the program to toggle debugging.

#if DEBUG > 0
// This statement is not output by the preprocessor if DEBUG is 0
fprintf(stderr, "Done with loop. sum = %d\n", sum);

#endif

shell-prompt: cc -O -Wall -DEBUG=1 prog.c -o prog

19.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is caveman debugging? Is it obsolete?

2. Where should debug output be sent and why?

3. How do we disable debug output when we no longer need it?
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19.3 Unix Debuggers: Which One?

There are many debuggers on the market, some of which have sophisticated graphical interfaces. We will introduce three tools
that are free and portable to most POSIX platforms.

19.3.1 Debugger Features

Debuggers allow you to examine variable contents, making them an alternative to caveman debug code.

With a debugger, we can set break points, where the program is automatically stopped. This way, we can see how far the program
is going before it crashes.

When a program terminates, we can use a debugger to get a traceback (or backtrace, or just trace), showing the exact point where
it terminated, along with the function calls and argument values leading up to it.

Getting an accurate trace requires compiling with -g and not using aggressive optimizations. The -g flag tells the compiler
to generate an address map, connecting the location of each machine instruction to a source statement. This map allows the
debugger to tell you where in the source code the problem occurred. Remember that we are debugging machine code, not source
code. Some aggressive optimizations make it impossible to generate an accurate map. Without -g, the debugger can trace the
function calls, but cannot pinpoint a location in the source code.

Note Changing the optimization level may cause or eliminate a crash. The optimizer may alter the organization of data in
memory, thus changing the impact of a stray pointer. This is another reason to test code incrementally to catch bugs before
they become difficult.

19.3.2 Types of Debuggers

Symbolic debuggers use the symbol table in the executable to track external symbols (static variables and functions). They cannot
always track local variables, whose address may be different each time a block of code is executed.

Source level debuggers use the complete address map generated by -g to determine the exact source statement associated with
each machine instruction.

19.3.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do we prepare a program for optimal debugging?

19.4 The GNU Debugger: gdb

19.4.1 Running Programs Under gdb

shell-prompt: cc -O -Wall -g prog.c -o prog
shell-prompt: gdb ./prog
(gdb) run [arguments]
Segmentation fault, core dumped.
(gdb) bt
...Shows backtrace
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19.4.2 Using a Core File

A core file is a snapshot of a program in memory at the moment of termination. It allows a debugger to see the values of variables
and other items on the stack to determine exactly where the program was at the moment of termination.

shell-prompt: cc -O -Wall -g prog.c -o prog
shell-prompt: ./prog
Segmentation fault, core dumped.
shell-prompt: gdb ./prog prog.core
(gdb) bt
...Shows backtrace

We can force a program to terminate and generate a core file using the SIGABRT signal.

shell-prompt: ps # Or "top", determine the PID of your program
shell-prompt: kill -ABRT 8923

19.4.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show how to force a process to terminate and generate a core file, then show a backtrace using gdb.

19.5 Addendum: The LLVM Debugger: lldb

19.5.1 Running Programs Under lldb

shell-prompt: cc -O -Wall -g prog.c -o prog
shell-prompt: lldb ./prog
(lldb) run [arguments]
Segmentation fault, core dumped.
(lldb) bt
...Shows backtrace

19.5.2 Using a Core File

shell-prompt: cc -O -Wall -g prog.c -o prog
shell-prompt: ./prog
Segmentation fault, core dumped.
shell-prompt: lldb -c prog.core [./prog] # ./prog is optional
(lldb) bt
...Shows backtrace

19.5.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show how to force a process to terminate and generate a core file, then show a backtrace using lldb.
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19.6 Addendum: Valgrind

Valgrind is a tool used mainly for memory debugging (e.g. detecting memory leaks) and profiling, determining where a program
spends its time.

Valgrind operates by decompiling machine code to its own intermediate format, analogous to Java byte code, and then running it
under its own interpreter and JIT compiler.
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Part III

Unix Library Functions and Their Use
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As we have seen, C is a very simple language. Most of the syntax of the language was covered in the previous part of this text.
If you’ve been doing your homework, you now know most of what there is to know about the C language itself.

However, most of the functionality of C programs comes not from language features, but from library functions, functions written
in C, precompiled, and stored in archives called libraries from which the linker can extract them.

The standard C libraries are a vast collection of many thousands of functions that we can use to build sophisticated programs.
They are like an unlimited supply of free Lego bricks for C programmers. This part of the text introduces a very tiny fraction of
common library functions just to provide a rough idea of what is possible.

Furthermore, the functionality available in free, open source 3rd party libraries dwarfs the standard libraries. There are generic li-
braries like libxtend (https://github.com/outpaddling/libxtend), scientific libraries like biolibc (https://github.com/auerlab/biolibc),
hashing libraries like xxHash (https://github.com/Cyan4973/xxHash), and other libraries for just about any purpose you can imag-
ine.

Due to the vastness of the standard libraries, we are now going to shift our focus from the depth of understanding that we stressed
while covering the C language, to a more breadth-based approach which aims only to provide familiarity with the nature of the
standard libraries and the concepts associated with some of the key features.

From a college educational perspective, the standard libraries contain roughly 1,000 credits worth of material. You can spend
your entire career working as a Unix systems programmer and only learn a small fraction of all there is to know about the standard
libraries. Hence, a 3-credit course can only provide the most basic introduction.

This is a prime example of the fact that education is not so much about accumulating knowledge as it is about learning how to find
it quickly and independently. We cannot succeed as programmers by memorizing facts about languages and libraries. We must
be skilled at finding what we need when we need it, e.g. by checking man pages to find out which headers must be included and
what link options are required for a given library function. We need to learn to use various resources to find out what functions
exist that might serve our purposes. The SEE ALSO sections in the man pages and web searches are often useful. When reading
books about programming, don’t try to memorize details that can easily be looked up in the man pages. Recognize the important
concepts and retain them, and focus on understanding them.

Our goal from this point on is simply to develop a sense of what the libraries have to offer, and the skills to look up the information
we need quickly. For standard library functions, 99% of that information is a few seconds away in the man pages.

https://github.com/outpaddling/libxtend
https://github.com/auerlab/biolibc
https://github.com/Cyan4973/xxHash
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Chapter 20

Building Object Code Libraries

20.1 Creating Libraries

Libraries, as we now know, are collections of precompiled functions, such as printf(), malloc(), etc. that the linker can
add to our executable when we build a program. A library is similar to a tar archive, in that it is a single file containing multiple
files.

As discussed earlier, we tell the linker to use a library with the -l flag followed by the unique portion of the library filename. E.g.,
to extract code from libm.a, we use -lm. To extract code from libxtend.a, we use -lxtend. We use -Ldirectory to
tell the linker to look in directory for additional library files.

For every new function you write, there are two choices:

• Add it to the program

• Add it to a library

If a function might be useful to another program, then adding it to a library makes it readily available and saves us the work of
duplicating or moving it later.

Building and maintaining libraries is as easy as building and maintaining programs, as you will see in the coming sections.

Note
By default, most linkers extract an entire object file from a library, not individual functions. Hence, if you place multiple functions
in a source file used to build a library, all of the functions in that source file will be linked into programs, even if only one of them
is used. Sometimes two or more functions must always coexist, so placing them in the same source file makes sense. Other
times, we may want a source file to contain only one library function.
Some compilers and linkers support extracting individual functions, but we should not assume this is possible. The portable
approach is to separate functions that do not need each other into their own source files.

Specifying a single library in a link command may link in hundreds or even thousands of object files. The benefit of using a
library instead of listing all these object files in the link command should be obvious.

20.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Which new functions should be placed in a library rather than made part of a specific application?
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20.2 Static or Dynamic?

When using static libraries, the linker extracts object (.o) files from the library and adds them to your executable, just as if the
object file were specified directly in the link command.

With dynamic, A.K.A. shared libraries, only a reference to the library is added to the executable. This results in potentially much
smaller executables. The loader, which reads an executable file from disk and loads the machine code into memory, finds the
shared libraries and extracts machine code from them at run time.

If shared library code was previously loaded for one application, then other applications can use the image already in memory.
Hence, dynamic libraries also save memory if multiple processes are using the same shared library code at the same time. Good
use cases include GUI libraries used by many desktop applications, such as GTK and Qt. GUIs contain a lot of code in order to
handle all the details of a graphics interface (fonts, colors, etc) and are shared by many applications regardless of their domain
(business, science, education, etc.).

Dynamic libraries add a lot of complexity, since applications must have access to the same library version used when the ap-
plication was compiled, or at least one with an identical ABI. If we upgrade a shared library, we must keep the older versions
around or recompile all programs that use the library. If the API (function interfaces) of the library has changed from the previous
version, then client programs can either be modified or continue using the old version.

20.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What happens when we link to a static library?

2. What happens when we link to a dynamic (shared) library?

3. What is the advantage of static libraries?

4. What are the advantages of a dynamic library?

20.3 Creating Static Libraries

Static libraries are easy to create and are well standardized. Static library files have a ".a" extension. Building a static library
entails two differences from building an executable:

• None of the source files can have a main() function.

• The link stage is replaced with an ar command, which creates a static library archive from the object files instead of an
executable. We usually also run ranlib on the archive to build an index used by the linker to search the library.

Suppose we want to build our own math library using two source files containing math functions, fastfact.c and intpower.
c. The Makefile below shows how we would do this.

Note Addendum: The book explicitly uses gcc in the example, which is not portable. At the time the book was written, it was
common to install gcc on commercial Unix systems and use it instead of the native cc compiler. This is no longer common.

OBJS = fastfact.o intpower.o
LIB = libmymath.a
API = mymath.h

CC ?= cc

https://www.gtk.org/
https://www.qt.io/
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CFLAGS ?= -Wall -O

AR ?= ar
RANLIB ?= ranlib
MKDIR ?= mkdir
INSTALL ?= install
RM ?= rm

################################################################
# This is the only major difference from building an executable

${LIB}: ${OBJS}
${AR} r ${LIB} ${OBJS}
${RANLIB} ${LIB}

#############################################################
# Building the object files is the same as for an executable

fastfact.o: fastfact.c mymath.h
${CC} -c ${CFLAGS} fastfact.c

intpower.o: intpower.c mymath.h
${CC} -c ${CFLAGS} intpower.c

.PHONY: install clean

install:
${MKDIR} ${DESTDIR}${PREFIX}/lib ${DESTDIR}${PREFIX}/include
${INSTALL} -c ${LIB} ${DESTDIR}${PREFIX}/lib
${INSTALL} -c ${API} ${DESTDIR}${PREFIX}/include

clean:
${RM} -f *.o ${LIB}

Output should appear as follows, assuming no object files exist:

cc -c -Wall -O fastfact.c
cc -c -Wall -O intpower.c
ar r libmymath.a fastfact.o intpower.o
ranlib libmymath.a

20.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show the commands needed to create a static library libstring.a from strcmp.o, strlen.o, strlcat.o, and
strchr.o.

20.4 Creating Dynamic (Shared) Libraries

Dynamic libraries are about as easy to create as static libraries, but they are not well standardized. For example, BSD and
Linux systems use an extension of ".so" (short for shared object), while macOS uses ".dylib" (dynamic library). The tools for
manipulating and examining shared libraries also differ across platforms. Dynamic libraries also must be tagged with a specific
version, so that multiple versions of the same libraries can coexist and be distinguished by the linker. For the sake of simplicity,
we will focus on static libraries in this class.
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20.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the major challenge in creating dynamic (shared) libraries?
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Chapter 21

Files and File Streams

Coverage of this topic will be brief and limited to key concepts and awareness of available functions. Most of the detailed
information you need can be found in the man pages, e.g. man fopen(). Do not waste time memorizing the syntax of C library
functions.

Students are not expected to memorize details about library functions. They should be aware of the common functions and their
basic use, and how to find more information in the man pages.

21.1 FILE Streams

The concept of FILE streams was introduced in Chapter 7. A stream is a buffering mechanism built on top of the low-level
read() and write() block I/O functions. Streams allow us the illusion of reading and writing one or a few bytes at a
time, without the enormous overhead we would incur if we actually accessed disk or other devices every time we need a single
character.

It can take up to a few milliseconds to locate a piece of data on a disk due to seek time (the time it takes to move the read/write
heads to the proper cylinder, one of the concentric circles of data on a disk) and latency time (the time it takes to wait for the disk
to rotate so the data pass under the heads). If we actually read one byte at a time from random locations on the disk, we would
only get a few hundred bytes per second.

FILE streams read a large block of data into a buffer (character array) each time they read from disk. If our program reads only
1 character at a time from the file, it will get most of them from the buffer, and only suffer seek and latency times once per block
instead of for every character. If a program reads large blocks of data, then FILE streams are not helpful and may actually hurt
performance.

21.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do FILE streams improve I/O performance?

21.2 The FILE Structure

Streams are implemented by a structure similar to the following:
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typedef struct
{

char *buff; /* I/O buffer */
char *p; /* Next available character */
size_t bytes; /* # of characters present */
size_t buffsize; /* Size of the buffer */
short flags; /* Stream parameters */
short file; /* File descriptor buffered by this structure */

} FILE;

The buff field is a character array allocated with malloc().

When reading a file, buff is filled using the low-level read() function to read a block of data, and p is set to the beginning of
buff. Then functions and macros such as getc() take one character at a time from buff and update p. When p reaches the
end of the buffer, another block is read using read() to refill buff.

When writing a file, functions and macros such as putc() place characters into the buffer one at a time and update p. When
the buffer is full, the entire contents are written with a single write() and the buffer is marked empty (p is set back to the
beginning of buff).

21.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What happens the first time a program calls getc() on a new stream?

2. What happens the second time a program calls getc() on a new stream?

3. How often does getc() actually access an input device?

21.3 Basic Stream I/O Functions

21.3.1 Opening a File: fopen()

The fopen() function opens a file, and allocates and initializes a new FILE structure. It returns a pointer to the FILE structure
if successful, or NULL if the file cannot be opened.

FILE *fopen(const char *path, const char *mode);

The common modes are:

• "r" for read-only

• "r+" for read+write on an existing file

• "w" for write-only (the file is overwritten if it exists or created if it does not)

• "w+" for overwrite and also allow reading

• "a" for append (add to an existing file)

• "a+" for append + allow reading
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21.3.2 Closing a File: fclose()

The fclose() function closes a file and frees all memory associated with the FILE structure.

Caution An fclose() should be inserted into the program immediately after adding the corresponding fopen(),
to ensure that we don’t forget to close the file. Failing to close a file can result in lost data.

#include <stdio.h>
#include <sysexits.h>
#include <errno.h> // Defines external status variable errno
#include <string.h> // strerror()

void some_function()

{
char *filename;
FILE *infile;

...

// strerror(errno) returns a human readable message such as
// "Permission denied" or "File does not exist". This should always
// be used when an error occurs opening a file.

if ( (infile = fopen(filename, "r")) == NULL )
{

fprintf(stderr, "Cannot open %s: %s\n", filename, strerror(errno));
exit(EX_NOINPUT);

}

...

fclose(infile);
}

void some_other_function()

{
char *filename;
FILE *outfile;

...

if ( (outfile = fopen(filename, "w")) == NULL )
{

fprintf(stderr, "Cannot open %s: %s\n", filename, strerror(errno));
exit(EX_CANTCREAT);

}

...

fclose(outfile);
}
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21.3.3 Reading Characters: getc() and fgetc()

The getc() macro and corresponding fgetc() function read a single character from a FILE stream. If the stream buffer is
empty, they call read() to attempt to fill it.

They return the character read (as an int), or EOF if the end of the file was encountered or an error occurs. The ferror() or
feof() functions can be used to distinguish between end-of-file and an error condition.

The macro is generally preferred, since reading a character is so simple that function call overhead is likely to exceed the cost of
the useful work.

// Note that an int is returned, not a char
int getc(FILE *stream);
int fgetc(FILE *stream);

Note that getchar() is actually a macro that simply calls getc(stdin):

#define getchar() getc(stdin)

21.3.4 Writing Characters: putc() and fputc()

The putc() macro and fputc() function place a single character into an output stream buffer. When the buffer is full, it is
flushed (written using write() and then marked empty).

Note that putchar() is actually a macro that simply calls putc(ch, stdin):

#define putchar(ch) putc(ch, stdout)

/*
* A simple "cat" command.

*
* Note: Since this program has no need to examine individual

* characters, using stream I/O is an inefficient approach. This

* is better done using low-level I/O with read() and write().

*/

#include <stdio.h>
#include <sysexits.h>
#include <errno.h> // external errno variable
#include <string.h> // strerror()
#include <stdlib.h> // exit()

void usage(char *argv[]);

int main(int argc, char *argv[])

{
char *filename;
FILE *infile;
int ch;

if ( argc != 2 )
usage(argv);

filename = argv[1];
if ( (infile = fopen(filename, "r")) == NULL )
{

fprintf(stderr, "%s: Cannot open %s: %s\n",
argv[0], argv[1], strerror(errno));

return EX_NOINPUT;
}
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while ( (ch = getc(infile)) != EOF )
putchar(ch);

if ( !feof(infile) )
{

fprintf(stderr, "Error occurred reading %s: %s\n",
filename, strerror(errno));

return EX_NOINPUT;
}

fclose(infile);

return EX_OK;
}

void usage(char *argv[])

{
fprintf(stderr, "Usage: %s filename\n", argv[0]);
exit(EX_USAGE);

}

21.3.5 Reading Lines: fgets()

We have already seen the fgets() function, which we used to input from stdin.

This function can be used with any stream opened by fopen() as well.

Note Be sure to always check the success status. The fgets() function returns NULL if either end-of-file or an error is
encountered. Use feof() or ferror() to distinguish between the two.

if ( (infile = fopen(filename, "r")) == NULL )
{

fprintf(stderr, "Cannot open %s: %s\n", filename, strerror(errno));
exit(EX_NOINPUT);

}

while ( fgets(buff, BUFF_SIZE, infile) != NULL )
{

...
}

if ( !feof(infile) )
{

fprintf(stderr, "Error reading %s: %s\n",
filename, strerror(errno));

}

fclose(infile);

21.3.6 Writing Strings: fputs()

The fputs() function writes a string (not a line) to the given stream.
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Note This function does not necessarily write a whole line. If the string does not contain a newline character, then next output
will be on the same line.

Note When writing to anything other than a terminal, be sure to check the success status, so that disk full conditions or write
errors are detected. This function returns a non-negative integer on success, or EOF on error. EOF is generally defined as -1.

if ( fputs(string, outfile) == EOF )
{

// Error out
}

21.3.7 Reading Numbers and Formatted Text: fscanf()

The fscanf() function behaves exactly like scanf(), but can read from any stream. The following are equivalent:

scanf("%d", &x);
fscanf(stdin, "%d", &x);

21.3.8 Writing Numbers and Formatted Text: fprintf()

The fprintf() function behaves exactly like printf(), but can read from any stream. The following are equivalent:

printf("%d", x);
fprintf(stdout, "%d", x);

21.3.9 Detecting End-of-file: feof() and EOF

The feof() function returns a non-zero value if the end-of-file was reached by a previous stream I/O function call, or 0 if it
was not.

It is usually more convenient to check the status of the I/O function as a loop condition and use feof() only to distinguish
between EOF and error conditions.

21.3.10 Stream I/O Examples

See the book for a more complete example.

21.3.11 Binary I/O: fread() and fwrite()

The fread() and fwrite() functions read and write unmodified binary data to a file stream. Unlike fscanf() and
fprintf(), numbers are not converted to or from text format.

Writing data in binary format is often faster, since it does not involve converting binary formats such as two’s complement and
IEEE floating point to or from character strings of digits, decimal points, etc. However, binary data may not be portable across
hardware with different endianness or floating point formats.
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unsigned short x = 0xFF10;

// Write 2 bytes of raw binary data to outfile
// Bytes written are 0xFF (255) and 0x10 (16)
fwrite(&x, sizeof(x), 1, outfile);

// Converts 0xFF10 to text "ff10"
// Bytes written are ’F’ (70), ’F’ (70), ’1’ (49), and ’0’ (48)
fprintf(outfile, "%04X", x);

21.3.12 Addendum: Writing Robust Code

Once again, all input/output statements must be checked for success, except those writing to a terminal.

#include <errno.h> // External errno variable
#include <string.h> // strerror()

if ( (infile = fopen(filename, "r")) == NULL )
{

fprintf(stderr, "Cannot open %s: %s\n", filename, strerror(errno));
exit(EX_NOINPUT); // man sysexits or see sysexits.h for codes

}

while ( (read_count = fscanf(infile, "%d %d", &x, &y)) == 2 )
{

// Process input
// If each fscanf() reads one line, increment line count

}

fclose(infile);

// If read_count is anything but 2 or EOF, something went wrong
if ( read_count != EOF )
{

// If each fscanf() reads one line, report line number as well
fprintf(stderr, "Error reading %s: %s\n", filename, strerror(errno));
exit(EX_DATAERR);

}

21.3.13 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. When should we check the exit status of an input or output function?

2. When should an fclose() call be added to a program?

3. Show how to open a file called "records.txt" for both reading and writing, without truncating the file.

4. How do we know the difference between a read error and an end-of-file condition?

5. What are the pros and cons of fread() and fwrite() vs fscanf() and fprintf()?
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Chapter 22

String and Character Functions

Coverage of this topic will be brief and limited to key concepts and awareness of available functions. Most of the information
you need can be found in the man pages, e.g. man strcmp().

Students are not expected to memorize details about library functions. They should be aware of the common functions and their
basic use, and how to find more information in the man pages.

22.1 Basic String Manipulation

A string in C is simply an array of characters.

The C language has no support for strings except for string constants (literals). String support is an inherently complex problem
that the designers of C decided was best left to library functions. E.g. an operator such as == can only support one mode of
comparison (case sensitive vs case insensitive, etc.), so users would have to turn to library functions for many tasks anyway.

Note C++ programmers often choose to use C string functions rather than C++ string classes.

C strings are null-terminated, i.e. terminated by a 0 byte denoted as ’\0’ to clarify that it’s a character.

Note The data type of ’\0’ and any other constant in single quotes is actually int, but the quotes indicate to the reader that
it’s a character rather than a number.

Note
When defining a a fixed size array to hold a string, it’s a common practice to add a + 1 to the size to accommodate the null
byte.

// This array can really hold a name up to NAME_MAX_CHARS
char first_name[NAME_MAX_CHARS + 1];
int ch;

// This loop would need NAME_MAX_CHARS - 1 if not for the + 1 above
for (c = 0; (ch = getchar()) != ’\n’) && (c < NAME_MAX_CHARS); ++c)

first_name[c] = ch;
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22.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is a string in C?

22.2 String Functions

Prototypes and other relevant items relating to standard library string functions are defined in string.h.

22.2.1 Copying Strings: strlcpy()

Caution
The original string copy function, strcpy(), does not know the size of the destination array. It can cause corruption
of adjacent variables and possibly security holes. Most people agree that strcpy() should never be used.
This function was created early in the development of C and Unix, following the "trust the programmer" philosophy.
However, at the time, "the programmer" referred to Dennis Ritchie, Ken Thompson, or a few other world-class computer
scientists working at Bell Labs. Once the use of C expanded into a broader community, it became clear that certain
standard library functions were too dangerous for general use.
The strncpy() was a replacement that stops at a specified number of characters, but does not null-terminate the
string if it is truncated. This will almost certainly lead to problems later.
The strlcpy() function is a non-standard function that works like strncpy(), but ensures that the target string is
always null-terminated.

The GNU community has so far declined to add strlcpy() to its standard libraries, citing some ideological arguments, which
have validity, but pragmatically speaking, don’t apply to every situation.

In reality, copying strings, or arrays of any kind for that matter, is something that should almost never happen. It’s a waste of
CPU time and memory. There are exceptions, of course.

If a function like strlcpy() has to truncate a string, then one could argue that there is a bug in the code. But sometimes a
truncated string is the best option available. It depends on the application, of course. String manipulation is inherently complex
and troublesome.

The strsqueeze() function in libxtend is another alternative that removes text from the middle of a string in order to fit it
within a limited number of characters. This is useful for abbreviating long pathnames, for example, and is used by the APE editor
for this purpose.

Caution
We can assign one char pointer to another, but this does not copy the string.

char name1[NAME_MAX_CHARS + 1],
name2[NAME_MAX_CHARS + 1],

*p1, *p2;

name1 = name2; // This will cause a compiler error since
// name1 is a pointer constant, not a variable

p1 = name; // Not a copy, p1 and name now point to the
// same string

p1 = p2; // Not a copy, p1 and p2 now point to the
// same string

Sometimes this is what we want. In fact, assigning a pointer is much more efficient that copying a string, since it’s
a scalar operation, whereas a string copy requires a loop. If we don’t really need a second copy of the string, using
pointers this way is preferable.
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22.2.2 Duplicating Strings: strdup()

The strdup() function uses malloc() to allocate an exact size array for a string and then copies the string to it.

Caution You must remember to free the memory allocated by strdup(), or you will have a memory leak.

This is good for building argv style arrays.

char temp_name[NAME_MAX_CHARS + 1],

*names[MAX_NAMES];
size_t c, name_count;

// Assume read_name() reads a string using fgets() or similar
for (c = 0; (read_name(temp_name) != EOF) && (c < MAX_NAMES); ++c)
{

if ( (names[c] = strdup(temp_name)) == NULL )
{

fprintf(stderr, "Could not allocate memory for names[%zu].\n", c);
exit(EX_UNAVAILABLE);

}
}

// Loop may terminate due to EOF or read error
if ( ferror(stdin) )
{

fputs("Error reading names.\n", stderr);
exit(EX_DATAERR);

}
name_count = c;

...

// When we’re done with the names...
for (c = 0; c < name_count; ++c)

free(names[c]);

22.2.3 Finding String Length: strlen()

The strlen() function loops through a string to find the null byte at the end and then returns the length.

int strlen(const char *string)

{
char *p;

for (p = string; *p != ’\0’; ++p)
;

return p - string;
}

char *string;
size_t length;

length = strlen(string);
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Most null-terminated string operations are highly efficient since they minimize iterations rather than process the unused portions
of a character array. The strlen() function is an exception, because getting the length of a string would not require a loop at
all if we implemented strings in a way that keeps track of the length, e.g.

// An alternative to null-terminated strings
typedef struct
{

size_t length;
char *string;

} string_t;

Avoid using strlen() as much as possible, by storing frequently used string lengths in a size_t variable.

22.2.4 Comparing Strings: strcmp() and strcasecmp()

In C, we use a library function to compare strings. Many languages support using operators such as == on strings. This is
inherently complex, however, as there are different types of string comparison, e.g. case sensitive vs insensitive, lexical vs
numeric, fixed-length vs null-terminated, etc.

The strcmp() function returns 0 if two strings are equal, a value less than 0 if the first string is lexically less than the second,
and a value greater than 0 otherwise.

char *string1, *string2;

...

if ( strcmp(string1, string2) > 0 )
{

...
}

Caution
You can use == on string objects in C, but it will compare the addresses, not the string objects.

// Tells us whether string1 and string2 point to the same string
if ( string1 == string2 )
{

...
}

Use strcasecmp() to compare strings without regard for upper and lower case letters. ( "Max" is the same a "MAX"
or "max". )
Use memcmp() to compare a fixed number of characters rather than everything to the null terminator.

22.2.5 Concatenating Strings: strlcat()

The original function for concatenating strings was strcat(). It should not be used for the same reason as strcpy().

// Append string2 to string1
// Does not know the size of the string1 array and could run off the end
strcat(string1, string2);

The strlcat() function is also not standardized, but is available on many systems other than GNU/Linux and is available in
libxtend on all systems.
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char string1[MAX_LEN + 1], string2[MAX_LEN + 1];

// Append string2 to string1
// Third argument indicates the size of the destination array
strlcat(string1, string2, MAX_LEN + 1);

Like strlcpy(), this could result in a truncated string. Use where appropriate.

22.2.6 Searching Strings: strstr() and strchr()

// Prototype
char *strstr(const char *big, const char *little);
char *strchr(const char *string, int character);

The strstr() function checks to see if the string little is a substring of big. It returns a pointer to the first occurrence of
little within big, or NULL if it is not a substring.

The strrchr() function searches in reverse and returns the last occurrence of little within big.

The strchr() and strrchr() functions similarly search for a single character within a string.

Note There are numerous related library functions. Check the "SEE ALSO" section of the man page for more insight.

22.2.7 Building Formatted Strings: snprintf()

The snprintf() function copies formatted data into a string in the same way fprintf() sends it to a stream.

char string[MAX_CHARS + 1];

snprintf(string, MAX_CHARS, "2 ^ %d is %0.2f.\n", c, power(2.0, c));

22.2.8 Tokenizing Strings: strsep()

A common task in programming is breaking up a string into pieces that are separated by whitespace or other delimiters. The
strsep() function makes this easy. It returns the address of the next token separated by any character in the string "delim" and
updates stringp to point to the first character after that token.

// Prototype
char *strsep(char **stringp, const char *delim);

char *string, *p, *tokens[MAX_TOKENS];
int c;

// Build an argv-style array of tokens
for (c = 0, p = string; (token[c] = strsep(&p, " \t")) != NULL; ++c)

;
token[c] = NULL;

Caution The strsep() function is destructive. It replaces the delimiters with null bytes in the original string.

Addendum: The similar and older strtok() function is considered obsolete.
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22.2.9 Addendum: More Information

You can find out more about string functions by checking the SEE ALSO sections of string function man pages, using man
string on some systems, and by looking at header files, e.g. more /usr/include/string.h

22.2.10 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why should we avoid copying strings (or other arrays)?

2. What is the problem with strcpy()?

3. Can we use the assignment operator, =, to copy strings?

4. How can we copy a string, ensuring that the target array is the correct size? Are there any risks?

5. What is the down side of using strlen() and how can we avoid it?

6. Why doesn’t C support string comparison with ==?

7. Where can we find more information about string functions?

22.3 Classifying Characters: The ctype Functions

The header ctype.h contains numerous macros for classifying characters.

int isalnum(int);
int isalpha(int);
int iscntrl(int);
int isdigit(int);
int isgraph(int);
int islower(int);
int isprint(int);
int ispunct(int);
int isspace(int);
int isupper(int);
int isxdigit(int);
int tolower(int);
int toupper(int);

if ( isalpha(ch) )
{

// ch is a letter
}

Upper and lower case letters in the ASCII/ISO character sets differ by 32 (25), e.g. ’A’ is 01000001 (65 decimal) while ’a’ is
01100001 (97 decimal). The toupper() and tolower() macros simply need to toggle bit 5:

#define toupper(ch) (islower(ch) ? (ch) & 0xDF : (ch)) // Mask = 11011111
#define tolower(ch) (isupper(ch) ? (ch) | 0x20 : (ch)) // Mask = 00100000

Addendum: Modern POSIX-compliant implementations will not affect non-letters.
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22.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What can we find in the header ctype.h?

22.4 Pattern Matching Functions

Note Students will not be expected to write code using pattern matching functions on quizzes or exams. They need only
understand what regular expressions and globbing patterns are and be familiar with the functions for handling them.

22.4.1 The Regex Functions

Regular expressions are patterns that can be used to match many different strings.

Pattern Meaning
. Any single character
* 0 or more of the preceding character
+ 1 or more of the preceding character

[] One character in the set or range of the enclosed characters
(same as globbing)

ˆ Beginning of the line
$ End of the line
.* 0 or more of any character
[a-z]* 0 or more lower-case letters

Table 22.1: RE Patterns

To use regular expressions in C, we first "compile" them using regcomp(). This converts the character string pattern to a
structure that can be compared much more efficiently by regexec().

char *string = "I’m Joe and I’m 10.5 years old.",

*pattern = "[0-9]+\.[0-9]+"; // Real number pattern
regex_t compiled_regex;
regmatch_t match[1];

if ( regcomp(&compiled_regex, pattern, REG_EXTENDED) == 0 )
{

if ( regexec(&compiled_reg, string, 1, match, 0) == 0 )
printf("Match found at character %lu.\n",

(unsigned long)match[0].rm_so);
}
regfree(&compiled_regex);

These are the functions used by Unix commands such as grep, sed, awk, etc., which search and manipulate files containing
regular expressions. For more information, read the man pages on regcomp(), regexec(), and related functions.

22.4.2 File Specification Matching: fnmatch() and glob()

Globbing patterns, as often used in Unix commands, look similar to regular expressions, but are not the same and do not serve
the same purpose.
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A globbing pattern always matches existing path names in a filesystem, whereas regular expressions look for patterns in a
character string. Globbing is covered here rather than in the files chapter in order to contrast it to regular expressions.

Globbing patterns are covered in Section 4.7.2.

int fnmatch(const char *pattern, const char *string, int options);
int glob(char *pattern, int options, func_t errfunc, glob_t *pathlist);

The fnmatch() function returns 0 if the given string (normally a pathname) matches pattern.

The glob() function allocates and populates pathlist with a list of pathnames in the CWD that match pattern.

code = glob("*.c",0,NULL,&paths);
if (code == 0)
{

for (p=paths.gl_pathv; *p != NULL; ++p)
puts(*p);

globfree(&paths);
}

22.4.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show a regular expression that matches an octal integer constant.

2. Show a globbing pattern that matches all of the object files in the directory Program1.

3. What is the difference between ’*’ in a regular expression (RE) and a globbing pattern?

22.5 Bulk Memory Manipulation

22.5.1 Copying Blocks: memcpy() and memmove()

These functions copy fixed-length blocks of memory as efficiently as possible. They are often more efficient than using a loop,
since implementations can take advantage of specific hardware features such as vector instructions.

They are identical, except that memmove() is safe to use when the target overlaps the source. The memcpy() function may
overwrite bytes in the source string before they are copied to the target, resulting in an incorrect copy.

|------------ source ------------|
|------------ target ------------|
^ ^
If we copy from left to right, bytes in this range are overwritten
before they are copied from the source.

car_t cars1[MAX_CARS], cars2[MAX_CARS];
size_t c;

// Ordinary loop method
for (c = 0; c < MAX_CARS; ++c)

cars2[c] = cars1[c];

// This may be faster, depending on the library and processor
memcpy(cars2, cars1, MAX_CARS * sizeof(car_t));
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22.5.2 Comparing Blocks: memcmp()

The memcmp() function compares memory byte-by-byte like strcmp(), but using a fixed length rather then to a null termi-
nator.

if ( memcmp(string1, string2, 10) == 0 )
{

// The first 10 bytes are the same
}

The memcmp() function is significantly faster the strcmp() on some platforms, since it does not need to compare one byte
at a time while searching for a null terminator. On a 64-bit computer, it can compare 64 bits (8 bytes) at a time, possibly more
using vector operations available on some CPUs.

22.5.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the difference between memcpy() and memmove()?

2. Does memcmp() have any advantages over strcmp()?
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Chapter 23

Odds and Ends

Coverage of this topic will be brief and limited to key concepts and awareness of available functions. Most of the information
you need can be found in the man pages, e.g. man qsort().

Students are not expected to memorize details about library functions. They should be aware of the common functions and their
basic use, and how to find more information in the man pages.

23.1 Math Functions

Math functions, as we have seen, mostly reside in the standard math library, libm.a or libm.so. Programs must be linked
with the -lm flag to search libm.*. Most other standard library functions reside in libc.*, which is always searched by the
linker. I.e., we do not need to use -lc.

Prototypes, macros, and related derived types are defined in /usr/include/math.h.

On some systems, such as FreeBSD, we can obtain reference information about available math functions by running man math.

On any system, we can browse the header files, e.g.

shell-prompt: more /usr/include/math.h

23.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Where do standard math functions reside, and what link option to we need to use them in our programs?

2. What is the portable way to find out what math functions are available on our system?

23.2 Data Conversion Functions

The standard libraries contain many functions for converting between strings and numbers. Among the most generic is strtol(),
which converts a string to an integer using any base. The strtol() function could be used by scanf() to support the "%ld"
and "%lx" specifiers, for example.
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char *string = "-8234", *end;
long line_count;

// strtol() returns the integer value converted from the string.
// end is set to the address of the first character that
// could not be converted as part of the number. If the
// entire string is supposed to be a number, this should point
// to a null terminator (’\0’) after the conversion. If
// end == string after calling strtol(), then no digits were found.
line_count = strtol(string, &end, 10);
if ( *end != ’\0’ )
{

fprintf(stderr, "Invalid argument: %s. Expected an integer.\n",
string);

exit(EX_USAGE);
}

The strtoll() converts to long long. For smaller integers such as short and int, we just use strtol().

The strtof(), strtod(), and strtold() functions convert to a float, double, and long double (base 10 only).

Converting numbers to strings is usually done using snprintf(), which writes the string to a character array rather than a file
stream like printf() or fprintf().

// Returns the number of characters converted, or a negative
// value if there was an error.
if ( snprintf(string, MAX_DIGITS + 1, "%d", -8234) < 0 )
{

// Error out
}

Run man strtol or man snprintf()for details, and check the "SEE ALSO" section for related functions.

23.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What function can we use to convert a string to an integer?

2. What function can we use to convert an integer to a string?

23.3 Random Numbers

The standard libraries contain functions for generating pseudorandom numbers ("pseudo-" = false). This begs the question: What
does random mean? How does a pseudorandom number differ from a "true" random number?

Everything that happens in the universe has a cause, and is therefore predictable in theory, though not always in practice. We
can’t predict where an electron will be in its orbit around the nucleus an atom because we are unable to observe its current
position and trajectory. The best we can do is define the typical bounds of its orbit, known as the electron cloud.

"Random" is really just a synonym for unpredictable in practice. The goal of pseudorandom number generators is to make it as
difficult as possible to predict the next number in the sequence.

The random() function returns a pseudorandom number with a uniform distribution between 0 and 231 - 1 that is good enough
for most purposes.
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// Print a random number
printf("%ld\n", random());

Unless we initialize the random number generator by calling srandom() with a different seed each time, random() will
always generate the same sequence. One simple trick is to use the current time, which will provide a new seed as long as at least
1 second has passed since the last call to srandom().

srandom(time(NULL));

23.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What does "random" mean?

2. What should we do before using the random() function to ensure somewhat unpredictable results?

23.4 Basic Process Control

23.4.1 Normal Termination: exit()

The exit() function terminates a process in basically the same way as a return statement in main(), but exit() can be
called from within any function. Don’t use this in main(), just use return.

if ( scanf("%zu", &count) != 1 )
{

fputs("Error reading count.\n", stderr);
exit(EX_DATAERR);

}

23.4.2 Last Requests: atexit()

Skip for now.

23.4.3 Creating a Core File: abort()

The abort() function aborts the current process and generates a core file, which can be used with a debugger to pinpoint
problems in the program. The same effect can be accomplished by sending a SIGABRT signal to the process.

shell-prompt: kill -ABRT 413 // Abort process with PID 413

abort();

23.4.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What does exit() take as an argument?
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23.5 Manipulating the Environment

23.5.1 Reading the Environment: getenv()

char *ostype;

// Get OSTYPE environment variable.
ostype = getenv("OSTYPE");

23.5.2 Writing to the Environment

// Set environment variable EDITOR to "nano", overwriting if it
// is already set. 0 in the third argument prevents overwriting (clobbering).
setenv("EDITOR", "nano", 1);

23.5.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How can a C program find out the value of the TERM environment variable and assign it to a string variable called
term_type?

23.6 Sorting and Searching

23.6.1 Sorting: qsort()

This is a polymorphic function, i.e. it can sort an array of any data type. This is made possible by passing the size of each object
and a pointer to a comparison function as arguments. This allows qsort() to compare and swap elements of any type. The
comparison function must have the same interface as strcmp().

char strings[MAX_STRINGS][MAX_STRING_LEN + 1];

// strcmp with no arguments represents the address of the function
// (much like an array name with no subscript)
// Case strcmp to take two void pointers to silence compiler warnings
qsort(strings, MAX_STRINGS, MAX_STRING_LEN + 1,

(int (*)(const void *, const void *))strcmp);

Moving entire strings around this way is horrifically inefficient. Sorting pointer arrays is an order of magnitude faster than arrays
of large objects (strings, structures). For this we need a compare function that takes pointers to pointers and compares the strings.

// This compare function and several others suitable for qsort() are
// available in libxtend
int strptrcmp(const char **p1, const char **p2)

{
return strcmp(*p1, *p2);

}

Quicksort is known to be an unstable algorithm, e.g. performance is poor if the list is partially sorted and the pivot is not carefully
selected. Basic quicksort algorithm becomes selection sort if the list is sorted and the first element in the list is chosen as the
pivot. This is easily avoided by choosing the middle element as the pivot instead. Most library implementations should be stable.
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Note FreeBSD also has heapsort() and mergesort() in the standard library. These are not portable to Linux and some
other Unix-like systems.

23.6.2 Searching: bsearch()

Normally, inhaling large amounts of data into memory should be avoided. It hurts memory performance (hierarchy) and limits
programs to available memory. However, if we want to search a list many times, loading it into memory and using a binary search
will likely pay off.

Uses same compare functions as qsort().

char *result;

result = bsearch("aardvark", strings, MAX_STRINGS, MAX_STRING_LEN + 1,
(int (*)(const void *, const void *))strcmp);

if ( result == NULL )
{

// String not found
}

23.6.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do functions like qsort() and bsearch() manage to be polymorphic?

23.7 Functions with Variable Argument Lists

Skip for now.

23.7.1 ANSI Form: stdarg.h

23.7.2 Unix Form: varargs.h

23.8 Addendum: Advanced: tgmath.h (C99)

Skip for now.
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Chapter 24

Working with the Unix Filesystem

Coverage of this topic will be brief and limited to key concepts and awareness of available functions. Most of the information
you need can be found in the man pages, e.g. man -a chown().

Students are not expected to memorize details about library functions. They should be aware of the common functions and their
basic use, and how to find more information in the man pages.

24.1 File Information: stat() and fstat()

The stat() function reads inode information (file metadata) for a given pathname.

There is also a stat Unix command, so run man 2 stat to learn about the function. man -a stat will display all man pages for
stat commands and functions.

#include <sys/stat.h>

...

struct stat st;
char *path = "input.txt";

if ( stat(path, &st) == 0 )
{

printf("File size is %lu.\n", st.st_size);
printf("Owner UID is %u.\n", st.st_uid);
printf("Permissions and other mode info is %o.\n", st.st_mode);
if ( st.st_mode & S_IFREG )

printf("%s is a regular file.\n", path);
}
else
{

// Error out
}

The fstat() function provides the same information, but takes a file descriptor rather than a pathname.

24.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.
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1. What function can we use to find out about the permissions on a file? A file descriptor?

2. How can we find out more about the stat() function?

24.2 Changing File Information

Many Unix commands have similar counterparts in the C library.

24.2.1 Changing Ownership: chown()

Skip for now. Can only be used by root user.

24.2.2 Changing Permissions: chmod()

As discussed in Section 4.3.3, Unix permissions are made up of 9 bits, read, write, and execute bits for "user", "group", and
"other".

The header file sys/stat.h defines named constants for each of these bits, which we can and should use to make our code
self-documenting:

#define S_IRWXU 0000700 /* RWX mask for owner */
#define S_IRUSR 0000400 /* R for owner */
#define S_IWUSR 0000200 /* W for owner */
#define S_IXUSR 0000100 /* X for owner */

#define S_IRWXG 0000070 /* RWX mask for group */
#define S_IRGRP 0000040 /* R for group */
#define S_IWGRP 0000020 /* W for group */
#define S_IXGRP 0000010 /* X for group */

#define S_IRWXO 0000007 /* RWX mask for other */
#define S_IROTH 0000004 /* R for other */
#define S_IWOTH 0000002 /* W for other */
#define S_IXOTH 0000001 /* X for other */

if ( stat(path, &st) == NULL )
{

// Add group write permissions by ORing in the group write bit
// S_IWGRP = 0000020 octal = 000... 000 010 000 binary
st.st_mode |= S_IWGRP;

// Remove all permissions for "other" using AND with the
// complement of all the "other" permission bits
// S_IROTH|S_IWOTH|S_IXOT = 0000007 octal
// ~(S_IROTH|S_IWOTH|S_IXOT) = 7777770 octal
st.st_mode &= ~(S_IROTH|S_IWOTH|S_IXOTH)

chmod(path, st.st_mode);
}

24.2.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Briefly describe the process of adding read permissions for "other" on a file from a C program. Or write the code if you
wish.
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24.3 Accessing Directories

Skip for now.

24.3.1 Reading Directories

24.3.2 Creating Directories
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Chapter 25

Low-Level I/O

Coverage of this topic will be brief and limited to key concepts and awareness of available functions. Most of the information
you need can be found in the man pages, e.g. man -a open().

Students are not expected to memorize details about library functions. They should be aware of the common functions and their
basic use, and how to find more information in the man pages.

25.1 Why Use Low-level I/O

Low-level I/O is a direct interface to the kernel’s input and output routines. Unlike FILE streams, there is no buffering, no indi-
vidual character input or output like getc() and putc(), and no numeric input or output like fprintf() and fscanf().

Note ALL input and output to/from any file or device is ultimately performed by the low-level I/O functions. FILE streams are an
abstraction built on top of low-level I/O.

With low-level I/O, we simply read and write fixed size blocks of bytes. By eliminating getc() and putc(), and the buffers
they manage, we use far less CPU time than FILE streams, and may achieve better I/O throughput, but only when reading or
writing blocks. FILE streams make it easier and more efficient to read or write smaller pieces of data like individual characters.

Most communication via pipes and sockets (covered later) is done using low-level I/O. FILE streams are primarily used for
terminals and human-readable files.

25.1.1 Cat: A Bad Example

Suppose we write a simple cat command with no features that require inspecting individual characters. We might do it as follows:

#include <stdio.h>
#include <sysexits.h>
#include <string.h>
#include <errno.h>

int main(int argc,char *argv[])

{
FILE *fpin;
char *filename;
int ch;

switch(argc)
{
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case 1:
fpin = stdin;
filename = "stdin";
break;

case 2:
filename = argv[1];
if ( (fpin = fopen(filename,"r")) == NULL )
{

fprintf(stderr,"Could not open file: %s: %s\n",
filename, strerror(errno));

return EX_NOINPUT;
}
break;

default:
fprintf(stderr,"Usage: %s [file]\n",

argv[0]);
return EX_USAGE;

}

while ( (ch=getc(fpin)) != EOF )
putchar(ch);

if ( !feof(fpin) )
{

fprintf(stderr, "Error reading %s: %s\n",
filename, strerror(errno));

return EX_DATAERR;
}

fclose(fpin);

return EX_OK;
}

The problem here, is that this program loads a block of data into the fpin FILE buffer, then copies it to the stdout FILE
buffer one character at a time using getc() and putc(), and finally writes the stdout FILE buffer to the standard output.
Given that the program does not care what any of the characters are, this buffer copying is an enormous waste of time.

Low-level I/O can do this much more efficiently, as we will see shortly.

25.1.2 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the advantage of using low-level I/O over FILE streams?

2. What is the limitation of low-level I/O compared with FILE streams?

25.2 Basic Input and Output

25.2.1 Opening Files: open()

The open() function works like fopen(), but returns a low-level integer file descriptor instead of a FILE structure.
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The fopen() function actually creates a FILE structure and calls open(). Each FILE structure contains the file descriptor
returned by open() for performing low-level reads and writes of the buffer contents. For example, when a FILE stream write
buffer is full, its contents are written out using a low-level write() to the file descriptor returns by open().

Descriptor 0 is the standard input, 1 is the standard output, and 2 is the standard error. The open() function returns successively
higher values, or -1 if an error occurred. E.g., the first descriptor returned by open()will be 3, assuming all the standard streams
are already open.

The open mode for open() is given by a single integer argument made up of bit flags. Constants are defined in fcntl.h,
which we can OR together to define the open mode. A few of them are described in Table 25.1. These named constants must be
used for both portability and readability. We must never specify the open mode as a hard-coded integer constant.

Note Bit flags are a very common theme in systems programming. We saw them in chmod() and now in open(). There are
numerous other standard library functions that use the same technique to receive multiple Boolean values through one integer
argument.

Bit flag Meaning
O_RDONLY Open for reading only
O_WRONLY Open for writing only

O_CREAT Create the file if it does not exist. open() will fail without
this flag.

O_RDWR Open for reading and writing
O_APPEND Append rather than overwrite
O_TRUNC Truncate existing file on open

Table 25.1: Mode bits for open()

// File descriptor, part of the FILE structure
int infd;

if ( (fd = open(path, O_RDONLY)) == -1 )
{

fprintf(stderr, "Could not open %s: %s\n",
path, strerror(errno));

return EX_NOINPUT;
}

// File descriptor, part of the FILE structure
int outfd;

// When creating a file, we also specify the permissions as a 3rd argument
if ( (fd = open(path, O_WRONLY|O_CREAT, 0644)) == -1 )
{

fprintf(stderr, "Could not open %s: %s\n",
path, strerror(errno));

return EX_CANTCREAT;
}

25.2.2 Reading Files: read()

The read() function reads as many bytes as requested in the third argument, or fewer if it reaches the end of the file. It returns
the actual number of bytes read, or -1 if there was an error.

Note The read() function is called by getc() and some other FILE stream functions to fill the stream buffer when it is
empty.
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ssize_t bytes; // Signed size_t to allow for negative error codes
char buff[BUFF_SIZE];

if ( (bytes = read(infd, buff, BUFF_SIZE)) == -1 )
{

fprintf(stderr, "Could not read %s: %s\n",
path, strerror(errno));

return EX_DATAERR;
}

25.2.3 Writing Files: write()

The write() function writes as many bytes as requested in the third argument, or fewer if it the medium becomes full. It
returns the actual number of bytes written, or -1 if there was an error.

Note The write() function is called by putc() and some other FILE stream functions to flush the stream buffer when it is
full.

ssize_t bytes; // Signed size_t to allow for negative error codes

if ( (bytes = write(outfd, buff, BUFF_SIZE)) == -1 )
{

fprintf(stderr, "Could not write %s: %s\n",
path, strerror(errno));

return EX_DATAERR;
}

25.2.4 Closing Files: close()

Note The close() function is called by fclose(), which then deallocates the FILE structure created by fopen().

close(infd);

25.2.5 Moving within a File: lseek()

lseek(infd, 0, SEEK_SET); // Rewind to beginning of file

25.2.6 Cat: A Better Example

Below is a simple cat command that uses low-level I/O for greater efficiency. Note that in order to add features such as high-
lighting control characters, we would need to examine each character, and we might as well use FILE streams and getc().

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>
#include <fcntl.h>
#include <sysexits.h>
#include <string.h>
#include <errno.h>
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/* Relatively large buffer will mean few read and write calls */
#define BUFF_SIZE 65536

int main(int argc,char *argv[])

{
char buff[BUFF_SIZE+1], *filename;
int infd;
size_t bytes;

switch(argc)
{

case 1: /* Used as filter */
infd = fileno(stdin);
filename = "stdin";
break;

case 2: /* Open the given filename */
filename = argv[1];
infd = open(filename, O_RDONLY);
if ( infd == -1 )
{

fprintf(stderr, "Could not open file: %s: %s\n",
argv[1], strerror(errno));

return EX_NOINPUT;
}
break;

default:
fprintf(stderr,"Usage: %s [file]\n",

argv[0]);
return EX_USAGE;

}

/* Read and write 64k blocks */
while ( (bytes=read(infd,buff,BUFF_SIZE)) > 0 )

write(fileno(stdout),buff,bytes);

close(infd);

if ( bytes == -1 )
{

fprintf(stderr, "Error reading %s: %s\n",
filename, strerror(errno));

return EX_DATAERR;
}

return EX_OK;
}

25.2.7 Choosing the Right Buffer Size

Skip for now. See book.

25.2.8 Handling Multiple Files: select()

Skip for now. See book.
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25.2.9 Controlling File Descriptors: fcntl()

Skip for now. See book.

25.2.10 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What does open() return? How does it relate to what fopen() returns?

2. How does write() relate to putc() and other FILE stream functions?
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Chapter 26

Controlling I/O Device Drivers

Skip for now. Will come back to it if we run out of material, which is unlikely.

26.1 Termios

Interface based on RS-232 serial port / modem protocol. This was the standard for dumb terminals used with Unix systems until
the 1990s, when Ethernet took over.

Also commonly used to communicate with embedded microcontrollers. RoboCTL.

26.1.1 Input Flags

26.1.2 Output Flags

26.1.3 Control Flags

26.1.4 Local Flags

26.1.5 Control Characters

26.1.6 The Termios Functions

26.1.7 Alternatives to the Termios Interface

Other Low-evel Methods

High-level Libraries

Curses, twintk

Addendum: Commercial libraries like Vermont Views are defunct.
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Chapter 27

Unix Processes

27.1 Creating Processes

A process, as discussed in Section 4.2.2, is the execution of a program. If Joe and Sarah are both running the same program,
there is one program, but two processes.

We can list currently running processes using ps:

FreeBSD moray.acadix bacon ~ 999: ps ax
PID TT STAT TIME COMMAND
0 - DLs 7:26.21 [kernel]
1 - SLs 0:00.28 /sbin/init
2 - DL 0:00.00 [KTLS]

[ numerous processes omitted ]

71502 0 Is 0:00.04 /bin/tcsh
72155 0 S+ 0:00.03 ape processes.dbk
72216 1 Ss 0:00.05 /bin/tcsh
72241 1 R+ 0:00.00 ps ax

A very convenient way to run another process from within a C program is the system() function, which takes a shell command
as a string argument:

system("ls -als /etc | more");

This is very convenient, since it provides access to all the features built into the Bourne shell, such as redirection, pipes, etc.
This approach has a lot of overhead, however, since it starts up a Bourne shell process, and then passes the command to the shell
process.

For more efficient and tunable process creation, we turn to the traditional fork() and exec() approach, or the newer POSIX
spawn interface.

27.1.1 Creating Processes: fork()

Unix has a special function that is called from one place, but returns to two places. This is possible, because the function clones
the process that called it. This function returns 0 to the new process (the child process) and returns the process ID (PID) of the
child process to the original process that called it (the parent process).

/*
* Clone the calling process. The ONLY difference between

* the two processes immediately after fork() is their

* PIDs and the return value they receive from fork().
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*/

if ( fork() == 0 )
{

// This clause is only run by the child process
}
else
{

// This clause is only run by the parent process
}

27.1.2 Transforming Processes: execve()

Of course, having two processes doing exactly the same thing to the same input data is of no use. So, after the parent process is
cloned, one of them must evolve so that it can do something that the other is not doing.

The exec family of functions replace the program being run by calling process. These functions load a new program into the
calling process, replacing the program that called them, and call the main() function of the new program.

The execl() function and derivatives take the path of a program followed by a list of separate arguments, which are com-
bined into an argv style pointer array and passed to main() of the new program. The execlp() function uses the PATH
environment variable to find the command.

int execl(const char *path, const char *argv0, const char *argv1, ...);

These functions take a variable number of arguments, like printf(). To indicate the end of the argument list, we pass NULL
as the last argument.

execl("/bin/ls", "ls", NULL);

Note The command is given twice, once as the path, and again as argv0.

if ( fork() == 0 )
{

// This clause is only run by the child process
execlp("ls", "ls", "-als", "/etc", NULL);

// An exec function should not return
// If we’re running this, the exec failed
fprintf(stderr, "exec failed: %s\n", strerror(errno));
exit(EX_OSERR);

}
else
{

// This clause is only run by the parent process
}

If we have the arguments for the new program already in an argv style array, we can use the execv() family of functions
instead.

if ( fork() == 0 )
{

// This clause is only run by the child process
char *new_argv[] = { "ls", "-als", "/etc", NULL };

execvp("ls", new_argv);
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// An exec function should not return
// If we’re running this, the exec failed
fprintf(stderr, "exec failed: %s\n", strerror(errno));
exit(EX_OSERR);

}
else
{

// This clause is only run by the parent process
}

Note
There is also an internal exec command in Unix shells that replaces the shell process with a new process running a different
program. This simply causes the shell not to call fork() before calling an exec function.

# Runs ls in place of the shell process instead of under it
# Once ls is done, this shell session is finished
shell-prompt: exec ls

27.1.3 Waiting for Godot: wait()

The wait() function causes a parent process to pause until one of its children terminates. The PID of the child process is
returned, and the exit status is placed at the address provided by the argument.

if ( fork() == 0 )
{

// This clause is only run by the child process
char *new_argv[] = "ls", "-als", "/etc", NULL };

execvp("ls", new_argv);

// If we’re running this, the exec failed
fprintf(stderr, "exec failed: %s\n", strerror(errno));
exit(EX_OSERR);

}
else
{

// This clause is only run by the parent process
int status;

pid = wait(&status);

printf("Child process %d returned %d.\n", pid, status);
}

27.1.4 A Complete Example

The one-page skel-shell program below actually implements a functional Unix shell that can run any external command in the
PATH, and implements one internal command, exit.

This can be extended to add features such as redirection and pipes, more internal commands such as cd, command-line editing,
etc.

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/wait.h>
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#include <sysexits.h>

#define COMMAND_LEN 1024
#define MAX_ARGS 1024

int main()

{
char command[COMMAND_LEN+1], *command_ptr,

*new_argv[MAX_ARGS], **arg_ptr, *path;
int status;

/* Input commands until "exit" or Ctrl+d is entered */
do
{

fputs("skel-shell: ", stdout);
if ( fgets(command,COMMAND_LEN,stdin) == NULL )

return EX_OK; // Ctrl+d = EOF

/* Set up argv array for execvp() */
arg_ptr = new_argv, command_ptr = command;
while ( ((*arg_ptr = strsep(&command_ptr, " \t\n")) != NULL) &&

(arg_ptr < &new_argv[MAX_ARGS]) )
if ( **arg_ptr != ’\0’ )

++arg_ptr;
path = new_argv[0];

/* If it’s an external command, fork and exec */
if ( (path != NULL) && (strcmp(path, "exit") != 0) )
{

/* Create child process */
if ( fork() == 0 )
{

/* If child, run command */
execvp(path, new_argv);

/* Error: execvp() should never return: kill child */
fprintf(stderr, "Could not execute %s: %s\n",

command, errno);
return EX_SOFTWARE;

}
else
{

/* If parent, wait for child */
wait(&status);

}
}

} while ( strcmp(command, "exit") != 0 );

return EX_OK;
}

27.1.5 Addendum: The POSIX Spawn Interface

The POSIX spawn interface provides a higher level interface for creating child processes than fork() and exec().

The posix_spawn() and posix_spawnp() functions create a new process and exec a new program in one function call,
while also accepting two structure pointers containing a wealth of information about how to initialize and modify the new process.
Both of these structure pointers can be NULL for the most basic use. Below is a modification of the skel-shell program using
basic posix_spawnp().
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#include <stdio.h>
#include <string.h>
#include <sys/wait.h>
#include <sysexits.h>
#include <spawn.h>

#define COMMAND_LEN 1024
#define MAX_ARGS 1024

int main(int argc, char *argv[], char *envp[])

{
char command[COMMAND_LEN+1], *command_ptr,

*new_argv[MAX_ARGS], **arg_ptr, *path;
int status;
pid_t child_pid;

/* Input commands until "exit" or Ctrl+d is entered */
do
{

fputs("skel-shell: ", stdout);
if ( fgets(command,COMMAND_LEN,stdin) == NULL )

return EX_OK; // Ctrl+d = EOF

/* Set up argv array for execvp() */
arg_ptr = new_argv, command_ptr = command;
while ( ((*arg_ptr = strsep(&command_ptr, " \t\n")) != NULL) &&

(arg_ptr < &new_argv[MAX_ARGS]) )
if ( **arg_ptr != ’\0’ )

++arg_ptr;
path = new_argv[0];

/* If it’s an external command, fork and exec */
if ( (path != NULL) && (strcmp(path, "exit") != 0) )
{

/* Create child process */
if ( posix_spawnp(&child_pid, path, NULL, NULL, new_argv, envp) != 0 )
{

/* Error: execvp() should never return: kill child */
fprintf(stderr, "Could not execute %s: %s\n",

command, errno);
return EX_SOFTWARE;

}
else
{

/* If parent, wait for child */
wait(&status);

}
}

} while ( strcmp(command, "exit") != 0 );

return EX_OK;
}

27.1.6 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.
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1. Describe one pro and one con of using the system() function?

2. How does a program know if it is running the parent process or the child process after calling fork()?

3. What do the exec family of functions return upon successful completion?

4. How does a shell program know when the foreground command we ran under it is finished?

5. What is the advantage of the POSIX spawn interface over fork() and exec()?

27.2 Redirection

27.2.1 Simple Redirection

Redirection, as performed by the shell using the < and > operators in a Unix command, involves closing one of the standard file
descriptors (0 = standard input, 1 = standard output, 2 = standard error) and then simply opening another file or device using
open().

This depends on the fact that the open() function always chooses the lowest available file descriptor. If descriptors 0, 1, and
2 are already open (as is usually the case), and no other files are open, then open() will return 3. If we close descriptor 0
(standard input), then open() will attach the next file opened to descriptor 0.

if ( fork() == 0 )
{

// This clause is only run by the child process
char *new_argv[] = "ls", "-als", "/etc", NULL },

*output_file = "output.txt";

// Redirect standard output to output.txt
close(1);
if ( open(output_file, O_WRONLY|O_CREAT) == -1 )
{

fprintf(stderr, "Could not open %s: %s\n",
output_file, strerror(errno));

exit(EX_CANTCREAT);
}

execvp("ls", new_argv);

// If we’re running this, the exec failed
fprintf(stderr, "exec failed: %s\n", strerror(errno));
exit(EX_OSERR);

}
else
{

// This clause is only run by the parent process
int status;

pid = wait(&status);

printf("Child process %d returned %d.\n", pid, status);
}

27.2.2 Redirection and Restoration

Skip for now. See the book.
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27.2.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Briefly describe the process of redirecting the standard input of a child process.
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Chapter 28

Interprocess Communication (IPC)

One of the most powerful features of multitasking operating systems is the ability of processes to communicate with each other.
There are numerous ways for processes to send information to other processes, in addition to passing arguments via exec
functions. The most common ones are covered in the sections below.

28.1 The Environment

We have already seen in Section 4.10 that child processes inherit all the environment variables of their parent. This is a very
simple form of IPC that a process can use to send a message of any kind to its children. It only works in one direction, however.
Children cannot talk back to their parents via the environment.

// This will be inherited by all child processes
setenv("EDITOR", "ape", 1);

28.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the major limitation of the environment as an IPC mechanism?

28.2 Signals

As we saw in Section 4.9, we can terminate the foreground process running under a Unix shell by typing "Ctrl+c", or suspend it
by typing "Ctrl+z". Recall from Chapter 4 that the foreground process is the one receiving input from the keyboard. There may
be other "background" processes running under the same shell, but they do not receive input from the keyboard.

How do Ctrl+c and Ctrl+z work? Signals are simple integer values that any Unix process can send to any other Unix process, as
long as it knows their process ID, or PID. We can see a list of running processes from the Unix shell by running ps. The PID is
the number in the first column.

shell-prompt: ps
PID TT STAT TIME COMMAND

49557 0 Is 0:00.13 /bin/tcsh
50145 0 S+ 0:00.27 ape ipc.dbk
41704 2- I 19:30.22 /usr/local/lib/virtualbox/VBoxHeadless --startvm Alma
6050 1- S 2269:35.77 /usr/local/lib/virtualbox/VBoxHeadless --startvm NetB

50012 3 Is+ 0:00.07 /bin/tcsh
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50421 4 Ss 0:00.06 /bin/tcsh
50446 4 R+ 0:00.00 ps

When we type Ctrl+c, the shell process normally sends a SIGINT signal (signal 2) to the foreground process. When we type
Ctrl+z, it sends a SIGTSTP (signal 18).

We could accomplish the same thing using the kill command, which is confusingly named, because it can send any signal, most
of which do not terminate the process. For example, to send a SIGINT signal to the ape process shown above, we could run:

shell-prompt: kill -INT 50145

To suspend it, we could run:

shell-prompt: kill -TSTP 50145

There is also a kill() function in the standard library, so we can achieve the same effect from within a C program directly
(rather than clumsily using system() to run a shell command).

system("kill -INT 50145); // A clumsy approach

kill(50145, SIGINT); // A cleaner approach

There are many different signal types with many different effects on the target process. Run man signal for a summary.

C programs can choose how to respond to all signals except signal 9 (SIGKILL), which always terminates a process immediately.
(This is also what a "Force quit" does on macOS).

To alter the default response to a signal, C programs can call signal() or the more flexible sigaction() to specify a
function to run in response to a given signal. Such a function is called a signal handler.

#include <stdio.h>
#include <signal.h>
#include <sysexits.h>

void catch_sigint(void);

int main(int argc,char *argv[])

{
struct sigaction new, old;
int ch;

/* Install new signal handler */
new.sa_handler = (void (*)())catch_sigint;
new.sa_flags = 0;
sigaction(SIGINT,&new,&old);
while ( (ch = getchar()) != ’q’ )

printf("%d\n",ch);

/* Restore old action, just for demonstration */
sigaction(SIGINT,&old,NULL);

return EX_OK;
}

void catch_sigint()

{
puts("Caught a SIGINT signal!");

}
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28.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What Unix command do we use to send a SIGCONT signal (which tells a stopped process to resume running) to a process.
What C function?

If you were grading a program where the student was tasked with writing a function that sends any signal to any process,
how many points would you award for descriptive naming to a student who gave the function this name?

2. What is a signal handler? How do we use one?

28.3 Pipes

We saw how to use pipes from the Unix shell in Section 4.8.3. Like most things in the Unix shell, this feature is built from C and
C library functions.

The standard library provides a very convenient way to run another process from within a C program and pipe output to it or pipe
input from it. The function looks somewhat like a mutant chimera of system() and fopen(), from a scientific experiment
gone wrong in an X-files episode.

The popen() function looks like fopen(), but takes a shell command like system() instead of a filename. If the open
mode is "r", then the standard output from the child process is redirected to the input file stream created. If the open mode is "w",
then then output file stream created is sent to the standard input of the child process.

Note We must use pclose(), not fclose(), to close a FILE stream opened with popen().

#include <stdio.h>
#include <string.h>
#include <sysexits.h>

#define MAX_LIST_SIZE 1000
#define MAX_FILENAME_LEN 128

int main()

{
FILE *infile;
char *list[MAX_LIST_SIZE],

file[MAX_FILENAME_LEN+1];
size_t list_size = 0;

infile = popen("ls","r");
if ( infile != NULL )
{

while ( (list_size < MAX_LIST_SIZE) &&
(fscanf(infile,"%s",file) == 1) )

{
list[list_size++] = strdup(file);
puts(file);

}
}
pclose(infile);

return EX_OK;
}



C/Unix Programmer’s Guide Lecture Outline and Addendum 242 / 255

A more general approach to creating a pipe is used in conjunction with fork() and exec(). The pipe() function opens two
file descriptors, placed in the array of two integers passed as an argument. We create the pipe before calling fork(). The child
process inherits all file descriptors from the parent, so that both parent and child can send and receive messages through the pipe.

This allows for bidirectional communication between the parent and child process. Each of them reads from fd[0] and writes
to fd[1]. I.e., fd[0] is the read end of the pipe and fd[1] is the write end. If the pipe is only to be used for one-way
communication, each process simply closes the descriptor it doesn’t need.

There is one pipe, which both processes can read and write. It is possible for a process to end up talking to itself via this pipe. It
is up to us to ensure that anything written to the pipe is not read back by the same process.

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sysexits.h>

#define BUFF_SIZE 40

int main(int argc,char *argv[])

{
int fd[2];
char buff[BUFF_SIZE+1];

if ( pipe(fd) == 0 )
{

if ( fork() == 0 )
{

/* Child: writer */
close(fd[0]);

/* Get a message to send */
fputs("Enter a message to send: ",stdout);
fgets(buff,BUFF_SIZE,stdin);

/* Send message, including nul */
write(fd[1],buff,strlen(buff));
close(fd[1]);

}
else
{

/* Parent: reader */
close(fd[1]);

/* Read message from parent */
read(fd[0],buff,BUFF_SIZE);
printf("Got the message: %s.",buff);
close(fd[0]);

}
}

return EX_OK;
}

28.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Show how to open a FILE stream that it piped to the standard input of a new process running the more command.
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2. Where do we use the pipe() function in order to set up communication between a parent and child process?

28.4 Sockets

Sockets are a communication construct to which processes can "plug in". They are similar to pipes, and in fact pipes can be
implemented as sockets under the hood. Sockets, however, are lower-level and more flexible than simple pipes.

One major difference is that sockets can be used by processes on different computers to communicate across a network. All other
IPC methods discussed here only work for processes running on the same computer.

Sockets are responsible for virtually all communication over the Internet (or local networks based on Ethernet and similar network
technologies).

Socket programming is complex, so there may not be time to get into the details in a typical undergraduate course. Knowing the
concepts may have to suffice.

Below is a simple example program like the pipes example above, but using its own function to implement the pipe using "Unix"
sockets to establish communication between processes on the same computer. Other types of sockets are needed for network
communication, along with access to two machines where we can run the processes that would talk to each other.

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <errno.h>
#include <sysexits.h>

#define BUFF_SIZE 40
#define BACKLOG 1 // Max queue length for socket

int home_made_pipe(int fd[]);

int main(int argc, char *argv[])

{
int fd[2];
char buff[BUFF_SIZE + 1];

if ( home_made_pipe(fd) == EX_OK )
{

if ( fork() == 0 )
{

// Child: writer, don’t need the read descriptor
close(fd[0]);

// Get a message to send
fputs("Enter a message to send: ", stdout);
fgets(buff, BUFF_SIZE, stdin);

// Send message, including nul byte
write(fd[1], buff, strlen(buff) + 1);
close(fd[1]);

}
else
{

// Parent: reader, don’t need the write descriptor
close(fd[1]);

// Read message from parent
read(fd[0], buff, BUFF_SIZE);
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printf("Got the message: %s", buff);
close(fd[0]);

}
}
else

perror("home_made_pipe() failed");

return EX_OK;
}

/*
* Home-made pipe function with informative output.

* This function creates a pair of connected sockets

* for local interprocess communication.

*/

int home_made_pipe(int fd[2])

{
// Using named initializers for sockaddr structure, since it may differ
// across platforms
struct sockaddr name0 = {.sa_family = AF_UNIX, .sa_data = "Barny"};
struct sockaddr name1 = {.sa_family = AF_UNIX, .sa_data = "Fred"};
struct sockaddr actual_name = {.sa_family = AF_UNIX, .sa_data = "Nobody"};

// Socket file descriptors
int s0, s1, connected_socket;

// At least as long as the strings above, may be altered by getcoskname()
socklen_t namelen0 = 14, namelen1 = 14, actual_namelen = 14;

// Create a pair of sockets
if ( (s0 = socket(AF_UNIX, SOCK_STREAM, 0)) == -1 )
{

fprintf(stderr, "Failed to create socket s0: %s.\n", strerror(errno));
return -1;

}

if ( (s1 = socket(AF_UNIX, SOCK_STREAM, 0)) == -1 )
{

fprintf(stderr, "Failed to create socket s1: %s.\n", strerror(errno));
return -1;

}

// Name the sockets
if ( bind(s0, &name0, namelen0) == -1 )
{

fprintf(stderr, "Failed to bind name0: %s.\n", strerror(errno));
return -1;

}

if ( bind(s1, &name1, namelen1) == -1 )
{

fprintf(stderr, "Failed to bind name1: %s.\n", strerror(errno));
return -1;

}

// Debug code
if ( getsockname(s1, &actual_name, &actual_namelen) == -1 )
{

fprintf(stderr, "Failed to get socketname of s1: %s\n", strerror(errno));
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return -1;
}
fprintf(stderr, "Socket name = %s, actual namelen = %d.\n",

actual_name.sa_data, actual_namelen);

// Set socket s1 to listen for connect requests
if ( listen(s1, BACKLOG) == -1 )
{

perror("listen() failed");
return -1;

}

// Send connection request from s0 to s1
if ( connect(s0, &name1, namelen1) == -1 )
{

perror("connect() failed");
return -1;

}

// Accept first connection request sent to s1
if ( (connected_socket = accept(s1, &actual_name, &actual_namelen)) == -1 )
{

perror("accept() failed.");
return -1;

}
else
{

printf("Accepted connection from %s.\n",
actual_name.sa_data);

close(s1);
}

// Return socket pair through fd[] argument
fd[0] = s0;
fd[1] = connected_socket;

// Must remove names before next listen()
unlink("Barny");
unlink("Fred");

return EX_OK;
}

28.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What is the major advantage of sockets over other IPC mechanisms?

2. What is the major disadvantage of sockets when compared with other IPC mechanisms?

28.5 Shared Memory

Shared memory allows two processes running on the same computer to directly access the same memory (i.e. variables, or
objects).
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Shared memory can make communication between processes faster and easier, since it does not involve system calls that make
processes wait for input or output, often giving up their time slot on the CPU and going back to the end of the CPU queue.

Instead, one process writes to a memory address, and other processes can read it whenever they want.

Note Regardless of how communication occurs between processes, process synchronization is always a potential issue. This
is inherent in the parallel processing algorithms and has nothing to do with how communication is implemented. While shared
memory eliminates some delays, processes reading from a shared memory object still must ensure that it is up-to-date. The
details of this are not covered here, but saved for a course in parallel/concurrent programming.

28.5.1 System V Shared Memory

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/wait.h>
#include <sysexits.h>

#define BLOCK_SIZE 40

int main(int argc,char *argv[])

{
static char *buff;
int shmid,

mode = SHM_R|SHM_W,
status;

/* Create shared memory object */
if ( (shmid=shmget(IPC_PRIVATE,

BLOCK_SIZE,mode)) == -1 )
perror("shmget() failed");

/* Map object into this process’ memory space */
if ( (void *)(buff = shmat(shmid,0,0)) == (void *)-1 )

perror("shmat() failed");

/* Create second process to share memory with */
if ( fork() == 0 )
{

/* Allow writer time to write message */
sleep(1);

/* Print message stored in shared memory */
printf("Reader read %s from shared memory.\n",buff);

/* Detach shared memory from process */
shmdt(buff);

/* Delete shared memory object from system */
shmctl(shmid,IPC_RMID,NULL);

}
else
{

char *message = "Hello, clone!";
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/* Write message to shared memory, including ’\0’ terminator */
memcpy(buff, message, strlen(message) + 1);
printf("Writer wrote %s to shared memory.\n",buff);

/* Detach shared memory from process */
shmdt(buff);

wait(&status);
}

return EX_OK;
}

28.5.2 Process Synchronization: Semaphores

Skip for now, see book.

28.5.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do processes communicate using shared memory?

2. Does shared memory eliminate the need for process synchronization?
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Chapter 29

Threads

Prerequisite: Unix processes (Chapter 27) and shared memory (Section 28.5).

29.1 Overview

Threads, also known as lightweight processes, are a feature of modern Unix systems aimed at better utilizing multiple cores, or
achieving better utilization of a single core with processes that would not fully utilize the core individually.

Threads differ from heavyweight processes (those created using fork() or posix_spawn()) in a number of ways, including,
but not limited to the following:

• The creation of heavyweight processes involves significant overhead cost, while threads can be created very quickly.

• Heavyweight processes usually run different programs, while threads usually run the same program on different data. The text
segment (machine code) of a program is typically shared by multiple threads, while each thread has its own data, stack, and
heap segments. ( See Table 11.3 to review. )

Both heavyweight processes and threads are created by cloning a process. Threads, however, don’t typically exec a different
program. The multiple threads generally continue to run the same program, sharing some variables among all threads, and
having private copies of others for each thread.

• Programs often use different numbers of threads for different parts of the program. E.g., multiple threads may be used to speed
up a particular loop, while the rest of the program runs in a single thread.

• Heavyweight processes cooperating with each other may run on the same machine or on different machines, and communicate
using a variety of different mechanisms such as environment variables, signals, pipes, sockets, or shared memory. The MPI
(Message Passing Interface) is a system based on sockets, often used by heavyweight processes cooperating as a parallel job
across multiple machines on a network.

Threads that are part of the same job normally run on the same machine and communicate entirely via shared memory.

Threads are often used to speed up scientific programs that need to process large amounts of data. If the data can be subdivided
into segments that are processed independently, threads are an easy way to utilize multiple cores to speed up processing.

The FreeBSD NFS (Network File System) server uses multiple threads to listen for and process requests from client machines.
This improves throughput by allowing other threads to immediately process requests rather than let them wait for a single
process to finish one request before responding to the next. The server automatically spawns additional threads when the number
of requests increases. Some other POSIX systems use a fixed number of heavyweight processes to service NFS clients.
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29.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. How do threads differ from heavyweight processes?

2. What are some examples how how threads can be used? Cite examples from the text and some of your own if possible.

29.2 Addendum: POSIX Threads

POSIX threads (pthreads) is one of the first standardized threads interfaces and is still widespread today. Countless programs
written since the 1990s use pthreads. It uses highly standardized library functions to create and destroy threads.

However, for most new code, POSIX threads have given way to simpler interfaces such as OpenMP (Open MultiProcessing).

We will leave the reader to investigate POSIX threads on their own and focus on OpenMP in this text.

29.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. Why are POSIX threads important to know about?

29.3 Addendum: OpenMP

The OpenMP (Open MultiProcessing) system is a feature of modern compilers that facilitates creation and coordination of threads
in C, C++, Fortran, and some other languages.

In C and C++, we use the #pragma preprocessor directive to create threads.

/***************************************************************************
* Description:

* OpenMP parallel common code example

*
* Arguments:

* None

*
* Returns:

* Standard exit codes (see sysexits.h)

*
* History:

* Date Name Modification

* 2012-06-27 Jason Bacon Begin

***************************************************************************/

#include <stdio.h>
#include <sysexits.h>
#include <omp.h>

int main(int argc,char *argv[])

{
/* Execute the same code simultaneously on multiple cores */
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#pragma omp parallel
printf("Hello from thread %d!\n", omp_get_thread_num());

return EX_OK;
}

To use OpenMP, we must include omp.h in the code and compile with -fopenmp.

shell-prompt: cc -O -Wall -fopenmp myprog.c -o myprog

One of the most convenient features is the ability to parallelize a loop with no modification to the code besides the pragma. If
each iteration of a loop is independent of other iterations, then OpenMP will execute multiple iterations at the same time on
different cores. For example, if the computer running the program below has 4 cores, then iterations of the loop where c is 0, 1,
2, and 3 can all run at the same time.

/***************************************************************************
* Description:

* OpenMP parallel loop example

*
* Arguments:

* None

*
* Returns:

* Standard exit codes (see sysexits.h)

*
* History:

* Date Name Modification

* 2011-10-06 Jason Bacon Begin

***************************************************************************/

#include <stdio.h>
#include <omp.h>
#include <sysexits.h>

int main(int argc,char *argv[])

{
int c;

#pragma omp parallel for
for (c=0; c < 8; ++c)
{

printf("Hello from thread %d, nthreads %d, c = %d\n",
omp_get_thread_num(), omp_get_num_threads(), c);

}
return EX_OK;

}

The OpenMP system has rules for automatically determining whether a variable should be shared among threads, or duplicated
so that each thread has a private copy that can contain a different value than other threads. Generally, a variable defined outside
a parallel region is shared by default, and one defined inside a parallel region is private by default. We can explicitly control the
nature each each variable using additional parameters in the pragma directive.

OpenMP also allows us to tag code as atomic, meaning that only one thread can be running any part of the code at a given time.
This is important to ensure the the code produces correct results. It may seem unnecessary below since sum += c_squared;
is a single statement. In reality, however, this statement translates to multiple machine instructions, and if one thread starts the
sequence before another finishes it, the results may be incorrect. Such a sequence of machine instructions is called a critical
section.
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/***************************************************************************
* Description:

* OpenMP private and shared variables example

* Run time is around 4 seconds for MAX = 200000000 on an i5

***************************************************************************/

#include <stdio.h>
#include <sysexits.h>

#define MAX 200000000

int main(int argc,char *argv[])

{
unsigned long sum;

sum=0;
/* compute sum of squares */

#pragma omp parallel for shared(sum)
for (unsigned long c = 1; c <= MAX; ++c)
{

#pragma omp atomic
sum += c;

}
printf("%lu\n", sum);
return EX_OK;

}

The OpenMP system uses all available cores by default, but we can control the number of threads using the OMP_NUM_THREADS
environment variable.

shell-prompt: env OMP_NUM_THREADS=4 ./myprog

29.3.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2.3 before doing the practice problems below.

1. What criteria must be satisfied in order to use an OpenMP parallel for loop?

2. How do we use OpenMP in a C program?

3. Write a C program that prints the squares of all integers from 1 to 100, using OpenMP to utilize all available cores on the
computer. Do you notice anything odd about the output?
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Chapter 30

Unix Graphics: X Windows

30.1 How X11 Works

Inherently networked

30.1.1 The X Server

30.1.2 X Clients

30.1.3 Addendum: DRI

30.2 Programming with Xlib

30.3 Programming with the Xt Toolkit

30.4 Addendum: OpenGL 3D Graphics

30.5 Addendum: QT, GTK
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Part IV

The C++ Programming Language
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Chapter 31

Introduction to C++
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Chapter 32
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