The Research Computing User’s Guide

October 16, 2023

Jason W. Bacon

The Research Computing User’s Guide

Contents

0.1 Acknowledgments e e e e e e e e e e e
0.2 Practice Problem InStructions e e e e
0.3 Best Practices for Students and Instructors e e e

0.4

0.5

0.3.1 Take Ownership of your Education
0.3.2 NotetoLecturers
0.3.3 Making the Most of Class Time
0.3.4 Runthe WholeRace
0.3.5 Abandonyourego
0.3.6 Whydo Quality Work?
0.3.7 Stick to the course materials
0.3.8 Homework, quiz, and exam format

Motivation and Goals

04.1

0.4.2 Damn it Jim, 'm a Scientist, not a Systems Programmer...

0.4.3 Solutions Looking for Problems
0.4.4 What You will Learn

Self-Study Instructions

0.5.1 Unix Self-Study Instructions
0.5.2 Parallel Computing Self-Study Instructions
0.5.3 Instructor’sGuide.
0.54 DiggingDeeper

I Research Computing

1 Computational Science

1.1

Introduction

1.1.3 The Computation Time Line

1.1.4 Development Time

The Research Computing User’s Guide iii

1.1.5 Deployment Time e e 10

1.1.6 Learning Time o o e e e e e e e e 10

LLI7 RunTime e e 10

1.1.8 Practice o o e e 10

1.2 Common Methods Used in Computational Science 11
1.2.1 Numerical Analysis. 11

1.2.2 Computational Modeling e e 12

1.23 DataMining e e e 12

1.2.4 Parameter SWEEPS« o v i i e e e e e e e e e e e e e e e e e e 13

1.25 DataSifting e 13

1.2.6 Monte Carlo e 13

1.2.7 Everything Else e e 14

1.2.8 Practice o e e 14

1.3 Venture Outside the Computer Science Bubble 15
1.4 Practice 15
2 Where do I get the Software? 16
2.1 ButIHate Programming... e e e e e e e e 16
211 Practice e e 17

22 Buylt . .o 17
221 Practice e 18

23 Download It L L e 18
2.3.1 How to Shoot Yourself in the Foot with Open Source Software 18

2.3.2 How Not to Shoot Yourself in the Foot with Open Source Software 19

2.3.3 Whatif There is No Package? 21

234 PractiCe e e 21

24 Containers v v e e e e e 22
241 Practice e e e e e 22

2.5 Finding Research Software e 22
251 Practice 23

2.6 Write It o e 23
2.6.1 Practice e e 24

2.7 Running Your Software e e e 24
27.1 WheredoIRunIt? 0 e 24

Your Own COMPULETS« o v o it et e e e e e e e e e e e e e e 24

College Computer Labs e e e 25

College Clusters and Grids 0 L i e 25

XSEDE, Open Science Grid e e 25

Commercial Services e e e 25

2772 Practice e e 25

The Research Computing User’s Guide iv

3 Using Unix 26
3.1 KISS: Keep It Simple, Stupid e e e 26
311 Practice e e 27

3.2 Whatis Unix? L o e 27
3.2.1 Aw, man... Have to Learn Another System? 27

3.2.2 Operating System or Religion? e e 29

323 TheUnix Standard APL. e 32

324 ShakeOutthe Bugs. e e e 33

32.5 TheUnix Standard UL 0 o e 33

3.2.6 Fast,Stable and Secure L e 34

3.2.7 Sharing Resources e 34

32.8 Practice e e 34

3.3 Unix User Interfaces e 35
3.3.1 Graphical User Interfaces (GUIS) e e 35

332 XllonmacOS L e e e 38
3.3.3 Command Line Interfaces (CLIs): Unix Shells 38

334 Terminals L 40

335 BasicShellUse o L e 42

33.6 Practice e 45

3.4 Still Need Windows? Don’t Panic! e 46
34.1 Cygwin: Try This First o L e 46

3.4.2 Windows Subsystem for Linux: Another Compatibility Layer 59

343 PractiCe e 60

3.5 LoggingInRemotely L e e e e e e 60
350 UnixtoUnix 0 0 e e e e e 60

352 Windows to UniX o o ot e e e e e e 61
Cygwin 61

PuTTY . . o 62

353 Terminal Types L L 62

354 Practice 64

3.6 Unix Command Basics e e e e 65
3.6.1 Practice e 66

3.7 BasicShell Tools o e e 67
37.1 Common Unix Shells e 67

372 Command History e 67

3.7.3 Auto-completion L L e e e e e e e e e e 68

374 Command-line Editing e 68

3.7.5 Globbing (File Specifications) e 68

37.6 PractiCe e e e 69

The Research Computing User’s Guide v

3.8

3.9

3.10

3.11

3.12

3.13

Processes L e 70
3.8.1 Practice e 71
The Unix File System 71
39.1 Unix Files. e 71
Textvs Binary Files e 71
Unix vs. Windows Text Files 72
3.9.2 Filesystem Organizationttt i i e e e e e e e e e e 72
Basic Concepts o e e e e e e e e e 72
Absolute Path Names e 74
Current Working Directory e e e 74
Relative Path Names e 75
Avoid Absolute Path Names L e 76
Special Directory Names e e 76
3.9.3 Ownership and Permissions e e e e e e 77
OVEIVIEW . . . o oo o it e e e e e e e e e 77
Viewing Permissions e e e e e e e e e 78
Setting Permissions 78
304 PractiCe e 80
Unix Commands and the Shell e 81
3.10.1 Internal Commands L e e e e e 81
3.10.2 External Commands e e e e e e e e 82
3.10.3 Getting Help o o . e e e e 82
3.10.4 Some Useful Unix Commands e e 84
File and Directory Management v i i vt e e e e e e e e 84
Shell Internal Commands L e e e 87
Simple Text File Processing e e 88
Text BAitors L e e e 89
Networking o e e e 89
Identity and Access Managementol o e e e e e 89
Terminal Control L L e e e 90
3.10.5 Practice oL e e e e e 90
POSIX and EXtensions e e 91
3011 Practice o o e e e e e e e e 92
Subshells o e 92
3021 Practice L e e e e e e e 92
Redirection and Pipes L e e e e 93
3.13.1 DeviceIndependence L e 93
3.13.2 Redirection oo e e e e e e 94

3.13.3 Special Filesin/dev e 97

The Research Computing User’s Guide vi

3.14

3.15

3.16

3.17

3.18

3.19

3134 Pipes . . . o 97
3.13.5 Misusing Pipes o . e e e e 99
3.13.6 Practice 101
Power Tools for Data Processing e e e e e e 102
3.14.1 Introduction e e e e 102
342 GIep. . o v o v e e e e 102
3143 AWK . L L 105
3044 Cut ..o e 108
3145 Sed . ..o 109
304.6 SOt . . o e e e 110
34T Tr . o o e 111
3048 Find o e 111
3149 Xargs . . .o 112
3A400BcC . . o e 113
B4 1LTar . . . o e 116
31402 GzZip, bZIP2, XZ . . o o o o e e e e e e e e e e 117
BA413ZIP,UNZIP . . . o o o e e e e e 119
BA414TIME . . . oo o e e e 119
BA4A5TOD . . o o o e 119
B4 06Tostat L e e e e 121
3.14.17GNU Parallel o e 122
BA408Practice e e e 122
File Transfer L e 124
3.15.1 Downloading Files with Curl, Fetch,and Wget 124
3.15.2 Pushing and Pulling Files with SFTPandRsync 125
3053 Practice e e 127
Environment Variables L e 128
3.16.1 Practice e 129
Shell Variables o o e e e 130
307.1 PractiCe e e e e 130
Process Control L e e 131
3.18.1 External Commands L e e e e 131
3.18.2 Special Key Combinations e 132
3.18.3 Shell Features for Job Control e 132
3084 Practice e e e e e 133
Remote GraphiCs e e e e e e 133
3.19.1 Background e 133
3.19.2 Configuration Steps Common to all Operating Systems 134

3.19.3 Graphical Programs on Windows with Cygwin 135

The Research Computing User’s Guide vii

Installation e e 135
Configurationo e e e e e e e 135

STart-Up e e 136

3.19.4 Remote 3D Graphics e 136
3.19.5 Practice e e e 136

4 Unix Shell Scripting 137
4.1 Whatis a Shell Script? e 137
411 PractiCe o i e e e e e e e 138

4.2 Why Write Shell Scripts? e e e e e 138
4.2.1 Efficiency and ACCUTaCy v vttt e e e e e 138

422 Documentation L. e e e e e e e e e e e e e e e 138

4.2.3 Why Unix Shell Scripts? e e e e e e 139
424 PractiCe e e 139

4.3 Which Shell? o 140
43.1 Common Shells e 140

432 Practice e 140

4.4 Writing and Running Shell Scripts e e 141
441 Practice e e 145

4.5 Sourcing SCriptS L e e 146
451 Practiceo e e 146

4.6 Shell Start-up SCripts e e 146
4.6.1 PractiCe e e e e e e 148

4.7 String Constants and Terminal Output e e e e 148
471 Practice e e e 150

4.8 Shell and Environment Variables L e 150
4.8.1 Assignment Statementso e e e e e e e e e 151

4.8.2 Variable References 152

4.8.3 Using Variables for Code Quality e 154

484 Output Capture i it e e e e 155

4.8.5 Practiceo e e e 155

49 Hardand Soft QUotes e e e e e e 156
4.9.1 Practice 157

410 UserInput o L o e e e e e e 158
4.10.1 Practiceo e 158

4.11 Conditional Execution L e e 159
4.11.1 Command Exit Status e e 159
4.11.2 If-then-else Commands o e 160

Bourne Shell Family 0 160

The Research Computing User’s Guide viii

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

Cshell Family e 164
4.11.3 Shell Conditional Operators v v v v v vttt e e e e 165
4114 Caseand SwitchCommands 166
4115 PractiCe oo e e e e e 168
Loops . . . o e 171
4.12.1 Forand Foreach 171
4.12.2 While Loops o o e e e e 173
4123 Practice e 174
Generalizing Your Code e 175
4.13.1 Hard-coding: Failure to Generalize e 175
4.13.2 Generalizing with UserInput L 175
4.13.3 Generalizing with Command-line Arguments 176

Bourne Shell Family 176

Cshell Family e e 176
4134 PractiCeo e e 177
Pitfalls and Best Practices L 178
4141 Practice oo e e e e e 178
Script Debugging L e e e e 178
4151 Practice e e 179
Functions, Child Scripts, and Aliases e 179
4.16.1 Bourne Shell Functions e 179
4.16.2 C Shell Separate SCripts e e 180
4.16.3 ALASES o e e 181
4.16.4 Practice e e 181
Here Documents e e 182
4.17.1 Practice e e e 183
Scripting an Analysis Pipeline L 183
4.18.1 What’s an Analysis Pipeline? e 183
4.18.2 Where do Pipelines Come From? L 183
4.18.3 Implementing Your Own Pipeline 183
4.18.4 Example Genomics Pipelines 184

Genomic Differential Analysis L e 184

Metagenomics Example 184
4185 Practice e e 186
Solutions to Practice Breaks L 187

The Research Computing User’s Guide ix
5 Data Management 188
5.1 Whatis Data Management? e e e e e 188

5.2 Why WOITy? . . . o o e e e e e e 188

5.3 Storage Logistics L e e 188
5.3.1 DataFormat 188

5.3.2 Lifespan. e e e e e 189

533 Securityo L e e e e e 189

5.34 Safety 189

535 Fundingo e 189

5.3.6 Storage Providers e e e e 189

5.3.7 Managing Your Own Storage e e 189

5.4 DataStorageonthe Cluster L 190

5.5 DataTransfer L e 190

5.6 Practice L e 191

II Parallel Computing 192
6 Parallel Computing 193
6.1 Introduction e e e 193
6.1.1 Motivation e e e e e e e e e e e 193

6.1.2 Computing is not Programming 193

6.1.3 Practice 193

6.2 Shared Memory and Multi-Core Technology e 194
6.2.1 Practice e 194

6.3 Distributed Parallel Computing L e e e e e 194
6.3.1 Overview e e 194

6.3.2 Clustersand HPC e 195

6.3.3 Gridsand HTC 197

6.3.4 PractiCe e e 197

6.4 Multiple Parallel Jobs L e e 198

6.5 Graphics Processors (Accelerators) L. e e e e 198
6.5.1 Practice 199

6.6 Best Practices in Parallel Computing e 199
6.6.1 ParallelizeasalLastResort e 199

6.6.2 Makeit Quick e 200

6.6.3 Monitor YourJobs 200

6.6.4 Development and Testing Servers e e e e e 200

6.6.5 Practice e 201

The Research Computing User’s Guide X
7 Job Scheduling 202
7.1 Fair Share Guidelines L e 202
7.2 Remote EXeCUtion L e e 202
721 Self-test e 203

7.3 Scheduler Basics e e 203
7.3.1 PurposeofaScheduler 203

7.3.2 Common Schedulers e e e 204
HTCondor 204

Load Sharing Facility (LSF) e 204

Portable Batch System (PBS) L 204

Simple Linux Utility for Resource Management (SLURM) 205

Sun Grid Engine (SGE) 205

733 JODTYPES . . o o o e e e e e e e 205
Batch Serial 205

Interactive L L e e e 205

Batch Parallel (Job Arrays) o e e e e e e 205

Multicore e 205

7.3.4 Checkpointing e e e e e e 205

T7.3.5 Self-test o e 206

8 Job Scheduling with SLURM 207
8.1 OVEIVIEW o o ot e e 207
82 Using SLURM L e e e 207
8.2.1 SLURMIJArgon o e e e e e 207

8.2.2 Cluster Status o e e e 208

823 JobStatus e 208

824 Usin@top e 209

8.2.5 Job Submission e e e 210
Submission SCripts L e e e e e e e e 210

Common Flags e 212

SLURM Resource Requirements e 213

Batch Serial Jobs L e 213

Interactive Jobs L e 213

Batch Parallel Jobs (Job Arrays) o o e e e 214

Multi-core JObs oL e e e e 215

MPI Multi-core Jobs e e 216

Environment Variables L e 217

8.2.6 TerminatingaJob L. e 218

8.2.7 Terminating Stray Processes 218

The Research Computing User’s Guide Xi
8.2.8 Viewing Output of Active Jobs 219

8.2.9 Checking Job Stats with sacct 219
8.2.10 Checking Status of Running Jobs with scontrol 220
8.2.11 Job Sequences e 221
8.2.12 Self-test 221

8.3 Local Customizations« v v vttt e e e e e e e e e e 222
9 Job Scheduling with HT Condor 223
9.1 The HTCondor Resource Manager o v v i v v i it et e e e e e e e e e e e e 223
9.1.1 A Unique Approach to Resource Management 223

9.1.2 HTCondor Terminology 224

9.1.3 PoolStatus e 224

9.1.4 JobSubmission e 225
Submit Description Files e 225

Running Your Own Compiled Programs 228

Common Features L e 230

HTCondor Resource Requirements 0 it 230

Batch Serial Jobs e 231

Batch Parallel Jobs (Job Clusters) 231

MPI (Multi-core) Jobs e e e e 231

A Submit Description File Template 231

9.1.5 JobStatus e 233

9.1.6 Terminating aJobor Cluster e 234

9.1.7 JobSequences e e e e e 234

9.1.8 Self-test e 235

9.2 Local CuStomizations v v v vttt e e e e e e e e e e e 235
10 Job Scheduling with PBS (TORQUE) 236
10.1 The PBS Scheduler e 236
10.1.1 Cluster Status o ot oo e e e e e e e e e e 236

The Ganglia Resource Monitor L 237

10.1.2 Job Status o e 237
10.1.3 Usin@tOp o o e e e 238
10.1.4 Job Submission e e e 238
Submission SCriptS e e 238

Common Flags o 240

PBS Resource Requirements L e e e 240

Batch Serial Jobs e 241

Batch Parallel Jobs (Job Arrays) L 241

The Research Computing User’s Guide Xii

MPI (Multi-core) JobS e 242
Environment Variables L 242

A Submit Script Template L e e e 243

10.1.5 TerminatingaJob L 245
10.1.6 Viewing Output of Active Jobs 245
10.1.7 Self-test o o o e e e e 246

11 Job Scheduling with LSF 247
11.1 The LSF Scheduler e 247
11.1.1 Submitting Jobs e 247
Using bsub withouta script L 247

Using a Submission Script L e e e e 247

T1.1.2 JobTYpes o o o e e e e e e 249
Batch Serial Jobs L L 249

Interactive Jobs 249

Waiting for Jobs to Complete 249

Batch Parallel Jobs 249

MPIJobs e 250

11.1.3 Job Control and Monitoring e 251
Listing Jobs e e e 251

Checking Progress o . i e e e e e 251

USINGLOP o o o e e e e 252

Terminating Jobs L L 252

Email Notification e 252

11.2 Good Neighbor Scheduling Strategies e e e e 252
11.2.1 Job Distribution e e 252

11.3 More Information e e 253
III High Performance Programming 254
12 Computer Hardware 255
12.1 Why Learn about Hardware? e 255
12.2 Central Processing Unit e e e e e 255
12.3 Non-volatile Auxiliary Storage: Disk, Tapeand Flash 255
12.4 Electronic MEMOIY o 0 i e e e e e e e 255
124.1 RAMand ROM o o e 255
12,42 Memory SIUCTUIE ot it e e e e e e e e e e e e e e e 256
12.4.3 The Memory Hierarchy e 256

12.5 Computer Word Size e e 257
12,6 Practice o o e e e e 257

The Research Computing User’s Guide xii

13 Software Development 259
13.1 Goals of a Top-notch Scientific Software Developer i 259
13.1.1 Maximize Portability 259
13.1.2 WOREF: Write Once, Run Forever e 260
13.1.3 Minimize CPU and Memory Requirements 260
13.1.4 Minimize Deployment Effort L 260
13.1.5 Practice o o e e 261

13.2 You are the Cause of your own Suffering e 261
13.2.1 Practice o o o e e 261

13.3 Language Levels e e e 261
13.3.1 Machine Language e 262
13.3.2 Assembly Language e e e e e e e 262
13.3.3 High Level Languages (HLLs) et 263
13.3.4 PractiCe o i e e e 263

13.4 Language Selection e e 263
13.4.1 Decision Factors e e 263
13.4.2 Language or Religion? 264
1343 PractiCe o o e e e 264

13.5 Compiled vs Interpreted Languages 264
13.5.1 Language Performance e e e e e 264
13.5.2 Vectorizing Interpreted Code L 265
13.5.3 Compiled Languages Don’t Guarantee a Fast Program 267
13.5.4 No, Compiled Languagesare Not Hard 267
13.5.5 Summary e e e e e e e e 268
13.5.6 Practice o . e e e 268

13.6 Common Compiled Languages o o i e e e e e e e e 269
13.6.1 C/CH+. . . o 269
13.6.2 Fortran e e e e 269
13.6.3 Conclusion L e e e e 269
13.6.4 PractiCe o o e e 269

13.7 Common Interpreted Languages L e 270
13.7.1 MATLAB and Octave o o ittt e e e e e e 270
13.7.2 A Real Example for Comparisonto C L e 272
13.7.3 Perl . . . o e 276
13.7.4 Python e e 276
13.7.5 R 277
13.7.6 Mixing Interpreted and Compiled Languages 277
13777 PractiCe i i e e e e e 277

13.8 Engineering Product Life Cycle e 278

The Research Computing User’s Guide Xiv

13.8.1 Specification e e e 278
13.8.2 Design e e e 278
13.8.3 Implementation and Testing oL 278
13.8.4 Production L e e e e e 279
13.8.5 Support and Maintenance e e e e e e e e e e e 279
13.8.6 Hardware Only: Disposal e 280
13.8.7 Practice o L e e e 280

14 Data Representation 281
14.1 What Everyone Should Know About Data Representation 281
T4.1.1 Practice o o e e 281

14.2 Representing Information oL e e e e 281
14.2.1 PractiCe o i e e 282

14.3 Numeric Limitations of COmMpPUters ot v it e e e e e 282
14.3.1 PractiCe o o e e e e 282

14.4 Fixed Point Number Systems e e e e 283
14.4.1 PractiCe o o i i e e 283

14.5 Modular Number Systems e e e e e 284
14.5.1 Practice o o o i e e 285

14.6 Binary Data Representation L e 285
14.6.1 PractiCe o o e e 285

14.7 Metric and Binary Quantities e e e e e e e 286
14.7.1 Practice o o e e e e e 286

14.8 The Arabic Numeral System 0 e e e e e e e e e e 286
14.8.1 Practice o o e 287

149 Number Bases e e 287
14.9.1 Converting Other Basesto Decimal 287

The Double-and-Add Method e 288

14.9.2 Converting Decimal to Other Bases e 288

The Remainder Method e 289

14.9.3 Practice o o e e e e 290
14.10Binary Fixed Point e e 290
14.10.1 Limitations of Binary 291
14.10.2PractiCe o o o e e e e e e 291
14.11Binary/Octal/Hexadecimal Conversions o vt v i it it ettt 291
T4 111 Practice o o o ot e e e 292
14.12Unsigned Binary Integers e e e e e e e 292
14.12.1 Introduction L L e e e e e 293

T4 122RaNgE e e 293

The Research Computing User’s Guide XV

14.12.3 Arithmetic e e 296
T4 124PractiCe v i it e e e e e e 296
14.13Signed Integers e 296
14.14Sign-Magnitude e e e e e e e e e e e e 296
T4 14 1Format o e e e e e e 296
T4 T4.2Negation o v vt e e e e e e e e e e e e e 297
14143 ConVerSiONS o . v v v v e e e e e e e e e e e e 297
14.14.4 Addition and Subtraction e e 297
T4 T45RANEE o o e e e 297
14.14.6 CompariSON v v v v v v e 297
T4 14T Practice o o i it e e e 297
14.150ne’s complement e e e e e e e e e e e e e e e 298
T4 15. 1 Format o e e e 298
T4 15.2Negation v v it e e e e e e e e e e e e e e 298
14153 ConVerSiONS o . v v vt e e e e e e e e e e e e e 298
14.15.4 Addition and Subtraction L e 298
T4 I5.5RaANge o o e e e 298
14.15.6 CompPariSON v v v v it e 298
L4157 Practice o o o e e e 299
14.16Two’s Complement o it e e e e e e e e e e e e e e e e 299
14.16.1 Format e e 299
T4.16.2Negation v v it e e e e e e e e e e e e e e 299
14.16.3 Another Way to Look at Two’s Complement 300
14.16.4 Addition and Subtraction L. L e300
T4.16.5RANGE e 300
14.16.6 COmpPariSON v v v v o i e 30
14.16.7 Overflow Detection o o i e e e 301
14.16.8 Extension and Reduction L 302
14.16.9Practice o e 302
14.17Biased Notation ot i e e e e e e e e e e e e o303
T4 17.1Format o e e e e e 303
T4 17.2Negation v v ot e e e e e e e e e e e e e e e e 303
14.17.3 Addition and Subtraction oL e e e e 303
T4 17.4RANZE o o o e e e e e e e e 303
14.17.5Comparison e e e e e e 303
14.17.6 Practice o e e 303
14.18Hex and Octal with Signed Numbers o Lo 304
I4.18. 1 Practice o o e e 304

14.19Floating Point e 304

The Research Computing User’s Guide xvi

14.19.1 The Basics o o o e 304
14.19.2 Floating Point and Abstractiont e e e e e e 305
14.19.3 A Simple Floating Point Format 306
14.19.4 Overflow and Underflow o e 307
14.19.5 Cost of Floating Point e 307
Precision e 307

Performance L e e 308

Power Consumption e e e e e e e e e 309

Difficult to Program 309

14.19.6 IEEE Floating Point Formats e 309
T4.19.7PractiCe o oo e e e e 311
14.20Character StOrage L e e e e e e e e 312
1420.1 ASCIL o e 312
14.20.2ISO . . e 313
14203 Unicode o o e 313
14204 PractiCe o o i e e e e e 313

15 Introduction to High-Performance Programming 314
15.1 Introduction o L e e e e e 314
15.1.1 Twoforthe Priceof One e 314
15.1.2 Why Cand Fortran? e e e e e 314
1513 Cand CH+ . . . o o e 314
15.1.4 Not Your Grandfather’s Fortran e 316
15.1.5 Practice o e 316

152 CProgram Structure o o i e e e e e e e e e e e e 316
15.2.1 Practice o o o e e e e 318

15.3 Fortran Program Structure L e e 318
15.3.1 Practice o L e e e 319

15.4 The Compilation Process e e e 319
15.4.1 Compilation Stages o e e e e 319
15.42 Portability e e 320
15.4.3 Using Libraries o o e e e e e e e e e e e e 321
15.4.4 C++ and Fortran Compilation 322
1545 PractiCe L e e e e 322

155 Comments e e e e e 323
15.5.1 Why do we Need Comments? ittt e e 323
1552 Line Comments it e e e e e e e e e e e e e 323
15.5.3 Block Comments o e e e e e 324

15.5.4 Practice e e 324

The Research Computing User’s Guide Xvii

15.6 Strings L 324
15.7 The C Preprocessor v v v i i i e e e e e e e e e e e e e e e e e e e 324
15.7.1 #define 325
1572 #include L L 325
1573 PractiCe o o e e e 326
15.8 The Basics of Variable Definitions e 327
15.8.1 Practice o L e e 328
15.9 Program Statements e 328
159.1 CStatements e e e e e 328
15.9.2 Fortran Statements L e e e e e e e e e e e 328
Subroutine Calls L e e 329

Assignment Statementso L e e e e e e e e e e e e 329

1593 Practice e e e e 329
15.10Fortran Modules o e e 329
IS 101 Practice o o o e e e e 330
15.11C Standard Libraries and Fortran Intrinsic Functions 330
ISTLIC oo e 330

IS AL2Fortran oo e e e e e e 333
ISAL3Practice o o o e e e e e 333
15.12Code Quality L e 334
I5.12.1Practice o o e e e e e e e 334
15.13Performance L e e e e 335
15.13.1 Polynomial Factoring e 335
I5.13.2PractiCe o o e e e e e 335

16 Data Types 336
16.1 ChoosingaData Type o i e e e e 336
16.1.1 Practice o o e e 337
16.2 Standard C TYPES o o v i e e e e e e e e e e 337
16.2.1 Practice o o e e 339
16.3 Standard Fortran Types o o e 340
16.3.1 Practice e e e 340
16.4 Variable Definitions and Declarations 340
16.4.1 Initializers e e 341
1642 Memory Maps L e e 342
16.4.3 Practice o i e 342
16.5 Constants e e e e e e e e e e 343
16.5.1 Literal Constants oo e e e e e e e 343

16.5.2 Named Constants i e e e e e e 343

The Research Computing User’s Guide xviii
16.53 Practice e 345
16.6 Math Operators and EXpressions 0 e 346
16.6.1 Practice e e e 348
16.7 Mixing Data Types e e 349
16.7.1 Implicit Data COnversions v vt i i it e e e e e e e 349
16.7.2 Explicit Data Conversions v v v v v i i e i e e e e e e e e e e e e 35
1673 PractiCe o e e e e e e 351
16.8 Code Quality e e e e 352
169 Performance L e e 353
17 Basic Terminal Input/Output (I/O) 354
17.1 CTerminal Input/Output (I/O) e e 354
17.1.1 CLanguage SUPPOTt o v v i it e e e e e e e e e e e e e e e e 354
17.1.2 CStandard Streams L e e e e e 354
17.1.3 CCharacter I/O 355
17.14 CString /O e e e e o355
17.1.5 CFormatted /O o e 356
17.1.6 Example of Cinputandoutput 358
17.1.7 Usingstderr with C o o e 358
17.1.8 PractiCe o e e e e e 359
17.2 Fortran Terminal Input/Output I/0) e 359
17.2.1 Writeand Print 359
17.22 Read o 360
17.2.3 The One Statement=One LineRule 360
17.2.4 Standard Units e 361
17.2.5 Example of Fortran inputand output 361
17.2.6 Fortran Formatted I/O e 362
17277 Practice o o o e e e e e 364
17.3 Using Standard Error e 364
17.3.1 Practice o o o e e 365

18 Conditional Execution 366
18.1 MOtIvation o o e e e e e e e e e 366
18.2 Design vs. Implementation L e e e e e e e e e 366
18.3 Boolean EXpressionso e e e e e 367
18.3.1 Boolean Constants e e e e 367
18.3.2 Relational EXpressions e e e e e 368
Relational Operators L e 368

Boolean Operators L e e e 368

The Research Computing User’s Guide Xix

18.3.3 Practice o e 369
18.4 If Statements e e e e e e e e e 369
18.4.1 CIfStatements i i e e 369
18.4.2 Fortran If Statements L e e e e 370
18.43 Additional Use Cases o o v v v v it e e e e e e 370
18.4.4 Nesting If Statements e e 371
18.4.5 Practice Break e 372
18.4.6 Practice e e 3T2
18.5 Switch, Select-Case 372
18.5.1 Practice e e 374
18.6 Code Quality e 374
18.7 Performance e e 375
18.8 Practice Break Solutions e 376
18.9 Code Examples o o i e e 376
19 Loops (Iterative Execution) 377
19.1 MOtivation o i e e e 377
19.2 Design vs. Implementation L e e e e e e e e e 377
193 Anatomy of aLoop L 377
19.3.1 Practice o o e e e e 378
19.4 While: The Universal Loop o 0 e e e e e e e 378
19.4.1 PractiCe o o i e 381
19.5 Fortran Fixed Do Loops o o e 381
19.5.1 Practice o e e 382
19.6 The CforLoop o e 382
19.6.1 Practice e e e 383
19.7 Unstructured Loops o o o e e e 383
19.7.1 Fortran Unstructured Do Loops 383
19.7.2 The Cbreak Statement o i e e e 384
19.7.3 PractiCe o o i e e 384
19.8 The Cdo-while Loop e 385
19.8.1 Practice o o e e 385
19.9 Fortran cycle and CCONtINUE oo ittt it e e e e e e e e e 385
19.10Infinite LoOps o e e e e 385
19.10.1Practice o o o e 386
19.11Loops and Round-off Error 386
19111 Practice o o o e e e 388
19.12Nested LoOps o o o e e 389

19.13Real Examples L e 389

The Research Computing User’s Guide XX

20

19.13.1Integer Powers e 389
19.132Newton’s Method L 390
19.133PractiCe o o i e e e e e 392
19.14Code Quality e 392
19.15Performance L e e 392
19.16Solutions to Practice Breaks e 039
Subprograms 395
20.1 MOtIVAtION o ot e e e e e e e e e e e e 395
20.2 Modular Design e e e e e e e 395
20.2.1 Abstractionand Layers L 395

20.3 Subprogram Implementation L e e e e e e 398
20.4 Fortran SUDPrograms v i i e e e e e e e e e e e e e e e e e 399
20.5 Internal vs External Subprograms L 401
20.6 Defining Your Own Fortran Functions e 401
20.7 Defining Your Own Subroutines o v v i i e e e e e e e e e 403
20.8 CSubprograms e e e e e e e e e e e e 404
20.9 Scope . ..o e 406
20.10SCOPE . . o . e e 407
20.10.1 Self-test o e e e e e 407
20.11Storage Class e e 407
20111 AULO . . o e 407

20 11.2S8tatiC . . . L L e e e e 408

20. 113 REISIEr o o e e e e e e e e e e e e 408
20.11.4Dynamico e e e e 409
20115 Self-test o o e 409
20.12Argument Variableso L L e e e e e e e e 409
20.12.1 Type Matching e 409
20.12.2 Argument Passing Details 410
Passby Value e 410

Pass by Reference e 411

20123 INntent . . . Lo e e e e e e e 411
20.13Top-down Programming and Stubs L 412
20.14C Preprocessor MACIOS v v v v v v e 414
20.15Recursionol e e e e e 414
20.16Creating your own Libraries 415

20.178elf-test e e 415

The Research Computing User’s Guide XXi

21 Building with Make 416
211 OVEIVIEW . . . o ottt e e e e e 416
2111 Practice o e e 417

21.2 Building a Program L. e e e e e 418
21.2.1 PractiCe o o i e e 419

21.3 Make Variables e e 419
2131 Practice oL e e 421

21.4 Phony Targets o o e e e e e e 421
2141 PractiCe o o i e e 423

21.5 Building Libraries e e e e e e e e 423
21.5.1 Practice e e e e 424

21.6 Mixing Tool Chains L . e 425
21.7 Mixing C, C++, and Fortran: A Brief Overview i 425
21.7.1 Dataformats e e e e e e 425
21.7.2 Labraries e e 425
21.7.3 Examples o e 425
2174 PractiCe o o i e e e e e 427

21.8 Makefile GENerators o v v it e e e e e e e e e e e e e e 427
21.8.1 Practice e 428

22 Memory Addresses and Pointers 429
23 Arrays 431
23.1 MOtIvation L e e e e e e e e e 431
23.2 Design vs. Implementation e e e e 431
233 Array Basicso L e e e e e 432
23.4 Dynamic Memory Allocation o e e e e e e e 435
23.5 Array COnstantso i e e e e e e e e e e e e e e e 436
23.6 Static Array Initialization L. Lo e e e e e 437
23.6.1 The Fortran DATA Statement i e e 437
23.6.2 Look-up Tables e 437

2377 Arrays as ATZUMENLS o o vt i e e e e e e e e e e e e e e e 439
23.8 Allocate and Subprogramso e e e e e e e e 440
23.9 Sortingo e e 442
23.10When to USe ATTAYS o v o v v e e e e e e e e e e e e e e e e e e 449
23.11Array Pitfalls e 450
23.11.1 Address Calculation e e e 450
23.11.2 Out-of-bounds Errors e e 450

23.11.3 Pinpointing Crashes with a Debugger 451

The Research Computing User’s Guide XXii
23.12Fortran 90 Vector Operations« v v v vt it e e e e e e e e e e e e 452
23.12.1 Implicit Loops L e 452
23122 Where o e e e 453
23.13Code Quality e 453
23.14The Memory Hierarchy o e 454
23 141 Levels . . . o L e 454

23. 142 Virtual MemMOTY o o o e e e e e e e e e e e e e e 454
23,143 Cache 454
23.144Memory Access TIme L L. 454
23.15Performance L e e e e 455
23.15.1Code Examples e 455
23.16Self-testo e 455
24 Strings 456
24.1 MOUIVAtION v v vt s e e e e e e 456
24.2 Defining String Variables L e e e e e e e 456
243 String CONSLANES o v it e e e e e e e e e e e e e e e e 457
24.4 Truncationand Padding L 457
24.5 Common String Operations v v v v vt e e e e e e e e e e e e e e e 458
24.5.1 Concatenation i e e e e e e e e e 458
2452 Trimming Lo e e e e e 458
2453 Stringlength 459
2454 Substringso e e e e 459

24.6 Strings as Subprogram ArgUMENtS oLt e e e e e e e e e e e e e e e e e 459
2477 Command-line Arguments e e e e e 460
24.8 Code Quality L L e 462
249 Performance e e e 462
249.1 Code Examples e e 462
24108 lf-test e e 462
25 File I/O 463
25.1 MOGIVAtION v ot e e e e 463
25.2 Filesystem SIrUCIUIE v v o i e 463
253 CFileStreams e e e 463
25.3.1 fopen()andfclose() L L 463
25.3.2 Stream Read Functions 463
25.3.3 Stream Write Functions L L e 463
253.4 Example Program. L e 463

254 CLow-level I/O e 466

The Research Computing User’s Guide Xxiii
25.4.1 open() and close()l e e e e e 466
2542 read() e e e 466
2543 WIItR() e e e e e 466

25.5 Fortran File Operations o it e e e e 466
25.5.1 Openand Close o i i e 466
2552 Read 468
2553 WIIte o o e e e e 468

25.6 File Format Standards L e 468

257 Code Quality e 469

25.8 Performance e e e 469
25.8.1 Code Examples L e 469

25.9 Self-test L 469

26 Matrices 470

26.1 MOUIVAtION o o o e e e e e 470
26.1.1 Tables o o e e 470
26.1.2 Grids e e 470
26.1.3 Bricks e 470
26.1.4 Systems of Equations L. 471
26.1.5 Matrix Representation e e e e e e e e e e 471

26.2 Multidimensional Arrays e e e 471

26.3 Reading and Writing Matrices e e 473

26.4 Importance of Traversal Order e e e e e e 474

26.5 Multidimensional Arrays as ATEUMENES o v v v vt bt e e e e e e e e e e e e e e 476

26.6 Fortran Intrinsic Functions L e 476

26.7 Homework e 477

27 Software Performance 478

27.1 MOUIVAtION o v o v s e e e e e e e e 478

27.2 Performance Factors L L e e e 478

27.3 Analysis of Algorithms L. e 478
27.3.1 Order of Operations: Big-O e 478
27.3.2 Predicting RunTime e e e e e 479
27.3.3 Determining Order L e e e e e e e e e 479
27.3.4 Common Algorithms 480

27.4 Language Selection e e e e e 480

27.5 Implementation Factors L e e e e e e 480
27.5.1 Hardware Utilization e e e e 480

OVEIVIEW . . . o oo ot e e e e e 480

The Research Computing User’s Guide XXiv
Vectorizing Interpreted Languages 481

27.6 Hardware Speed e e 481
27.7 Performance Measurement e e e e e e 481
27.7.1 Timing Programs L e e 481

27.7.2 Profiling: Timing Subprograms 482

27.8 Homework e 483

28 Structures 484
28.1 Motivation L. e e e e e e 484
282 CSHUCIUIES o v vt e i et e e e e e e e e e e e e e e 484
28.3 Fortran Structures ot e e e e e e e e e e 484
28.4 Classes and Object-oriented Programming (OOP) e 484
28.5 Homework e 484

29 Object Oriented Programming 485
30 The Preprocessor 488
30.1 Defined Constants L e e e e e e e e e e e e e e 488
30.2 Conditional Compilation L e e 488
30.3 Homework o L e e 488

31 Software Project Management 489
31.1 Build Systems o e e e e e e e e e e e e 489
31.2 Software Deployment e e e e e e e e e 489
31.3 Version Control SYStEMS v v o v i e e e e e e e e e e e e e e e e e e 490
31.4 Source Code Hosting 0 o e e e e e e e e 490
31.5 Don’t Invent your own Package Manager e 492
31.6 Follow the Filesystem Hierarchy Standard 493
31.7 Package-friendly Software L e e e 494
31.7.1 Modularityisthe Key e 494

31.7.2 All You Needis a Simple Makefile. 494

31.7.3 Use Conventional Tools e 494

31.7.4 Archiving Standards L L e e e e 494

31.7.5 Respectthe Environment L e e e e 494

31.7.6 Install the Same Files Everywhere 494

31.7.7 Versioning and Distribution Files o o 494

31.7.8 A Simple Example e 494

Debian Package L e 494

FreeBSD Port o e 494

MacPort e e e 494

Pkgsrc Package L 495

The Research Computing User’s Guide XXV

IV Parallel Programming 496
32 Parallel Programming 497
32.1 Serial vs. Parallel 497
32.1.1 Optimize the Serial Code First e 497

32.1.2 Parallel Computing vs Parallel Programming 497

32.1.3 Don’t Do Developmentona Clusteror Grid 497

32.1.4 Self-test L e e e 498

32.2 Scheduling Compilation L e e e e e e e e 498
32.2.1 Why Schedule Compilation? e e e e e e 498

32.2.2 Batch Serial and Batch Interactive 498

3223 Self-test o e 499

32.3 Further Reading L e 499
33 Programming for HTC 500
33.1 Introduction L. e 500
3311 Self-test o e e 500

33.2 Common Uses for HTC e 501
33.2.1 Monte Carlo Experiments e e e e e 501
Software Performance Optimization L e 505

Calcpiona SLURM Cluster o i et e e e e e e e e e 508

Calcpionan HTCondor Grid 0 e e e e e e 510

33.2.2 Parameter Sweeps and File Transfer e 514
Calcpi-fileon a SLURM CIuSter oottt t it s e e e e e e e 515
Calcpi-file on an HTCondor Grid519

3323 Self-test o e e e 522

34 Programming for HPC 523
34.1 Introduction L. e 523
3411 Self-test o e e e e e 05283

342 Common Uses for HPC e 524
343 Real HPC Examples o e 524
34.4 HPC Programming Languages and Libraries 524
34.4.1 Self-test e e 524

34.5 Shared Memory Parallel Programming with OpenMP 524
345.1 OMPParallel 0525

3452 OMPLOOPS . . . v v v e e e 527

34.5.3 Shared and Private Variables o528

34.5.4 Critical and Atomic SeCtions e e e e 529

34.5.5 Self-test e 531

The Research Computing User’s Guide XXVi
34.6 Shared Memory Parallelism with POSIX Threads 532
347 Message Passing Interface (MPI) e 532

34.7.1 Self-test o . e e 533
34.8 MPI vs Other Parallel Paradigms e 533
34.8.1 Self-test L e e 534
349 Structure of an MPIJob L L 534
34.10A Simple MPI Program e e e e 535
34.10.1Self-test o o e e e 540
34.11Best Practices with MPL. e 540
34110 Self-test o o e e e e 541
34.12Higher Level MPI Features e 541
34.12.1 Parallel Message Passing 541
34122 8elf-test o e e 542
34.13Process Distribution L. L L e e e e e e e 542
B403.1 Self-test o e e 542
34 14Parallel Disk /O o o e 542

V Systems Management 544

35 Systems Management 545
35.1 Guiding Principals e e e e 54
35.2 Attachment is the Cause of All Suffering e 546

36 Popular Unix Platforms in Science 547
36.1 FreeBSDin Science L . e e 547
36.2 Linux in SCIENCE L e e e e 551

36.2.1 RHEL 551
36.22 Ubuntu e 551
36.3 macOSIN SCIENCE e e e e e 552

37 Platform Selection 553
37.1 General AdViCe L e e e 553
37.2 Choosing Your Unix the Smart Way L e 554
37.3 RHEL/CentOS Linux o o e e e e e e e e e e 555
37.4 FreeBSD . . . e 555
37.5 Running a Desktop Unix System e 557
37.6 Unix File System CompariSOn o o v vttt e e e e e e e e e e e e 559
37.7 Network File System e e 560

The Research Computing User’s Guide

XXVil

38 System Security
38.1 Securing a new System

38.2 I've Been Hacked!

39 Software Management
39.1 The Stone Age vs. Today
3902 Goals

39.3 The Computational Science Time Line e

39.3.1 Development Time . . .
39.3.2 Deployment Time . . .
39.3.3 Learning Time
3934 RunTime
39.4 Package Managers
39.4.1 Motivation
39.4.2 FreeBSD Ports
3943 Pkgsrc.
39.5 What’s Wrong with Containers?

40 Running Multiple Operating Systems

41 Index

561
561
561

563
563
563
564
564
564
564
564
565
565
566
568
569

570

574

The Research Computing User’s Guide Xxviii

List of Figures

2.1
22

3.1
3.2
33
34
3.5
3.6

4.1

14.1

15.1

18.1

31.1

36.1
36.2
36.3
36.4
36.5
36.6

40.1
40.2
40.3

FreeBSD Ports Build Options e 20
Visualizing Gene Neighborhoods with Matplotlib 23
Hot Keys o e 39
Sample ofa Unix File system L e 73
File streams o e e e 94
Standard Streams L L e e e e e e e e e e e e e e e e e 95
Redirecting standard output L 95
Colorized grep OULPUL L L e e e e 105
Editingascriptin APE L L 145
Monte Carlo Dart Board e 308
Compilation L e e e e e e 320
Flowchart for a simple conditional e ... 3606
Getting the Gitlab Clone URL e 490
FreeBSD Installer Disk Partition Screen 548
FreeBSD Installer ZES Options o i it e e 548
FreeBSD Installer ZFS RAID Level Selection i 549
FreeBSD Installer ZFS Disk Selection e e 549
FreeBSD Installer ZFS Commit 0 e e e e e e e e e 550
FreeBSD ZFS Status e 550
Windows as a Guest under VirtualBoxonaMacHost57
CentOS 7 with Gnome Desktop as a Guest under VirtualBox 572

FreeBSD with Lumina Dekstop as a Guest under VirtualBox 573

The Research Computing User’s Guide XXiX

List of Tables

1.1

3.1
3.2
33
34
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

12.1
12.2

13.1

Computation Time Line 0. L e 10
Partial List of Unix Operating Systems 0 o v it e e e e e 29
Pkgsrc Build Times e 46
Default Key Bindings insome Shells e 68
Globbing Symbols L e e e e e 69
Special Directory Symbols 76
Common hotkeysinmore 83
Unix Commands e 90
Common EXtensions 92
Standard Streams L e e e e e e e e e e 95
Redirection Operators i e e e 95
Runtimes of pipes withcat e e e e 101
REPatterns e e e 103
Column headers of topcommand 120
Reserved Environment Variables 129
Conventional script file name eXtensionso 141
Shell Start Up SCripts o o o ot e e e e e e e e 147
Printf Format Specifiers e e 149
Special Character SEqUENCES o it e e e e e e e e e e 149
Test Command Relational Operators e 162
Test command file Operations e e e e e e e e e e e e 163
C Shell Relational Operators i s e 164
Shell Conditional Operators ot i e e e e e e e 165
Compression tool for each filename extension oL o 169
Example Memory Map e 256
The Memory Hierarchy o 257

Example MIPS Instruction i e e e e 262

The Research Computing User’s Guide XXX

13.2 Selection Sort of 200,000 Integers e e 266
14.1 BasicBinary Units e e e 285
14.2 Prefixes for larger quantities L. e e 286
O 288
14.4 Highest power of eachbase <=439 e 289
14.5 Binary/Octal Conversion it e e e e e 291
14.6 Binary/Hex COnversion o v vttt i it e e e e e e e e e e e e 292
14.7 Unsigned Binary Integer Ranges e e 293
14.8 Powers of 2 L e e 294
149 Powers of 2 L . L e 295
14.108-bit sign-magnitude format e 297
14.11Two’s Complement Integer Ranges e 301
14.12IEEE 32-bit Format e 310
14.13IEEE 64-bit Format e e 311
16.1 CDataTypes e e e 338
16.2 Fortran 90 Data Types o o o e e e e 340
16.3 Memory Map o o e e e e e e e 342
16.4 CConstants and Types o o e e e 343
16.5 CEscape Sequences v vttt e e e e 343
16.6 Fortran 90 Constants and Types o i e 344
16.7 Basic Math Operators in C e e e e 346
16.8 Bitwise Operators in C L e 347
16.9 Basic Math Operatorsin Fortran L 348
16.10Explicit Conversion Functions e e e e e e e 0352
17.1 Standard Stream Names e e e e e e 354
17.2 Format specifiers forprintf() L e e e e 356
17.3 Format specifiers forscanf() L 357
17.4 Standard Stream Names oL e e e 361
17.5 Common Format Descriptors o o ittt e e e e 363
18.1 Relational EXpressions e e 368
18.2 Relational Operators v v v v i e 368
18.3 Boolean Operators v v v i e e e e e e e e e e e e e e e e e 369
20.1 Program Sizes e e e e e e e e e e e e e e e e 39S
20.2 Passby Value o e e 411

20.3 Passby Reference L 411

The Research Computing User’s Guide XXXi

211

23.1
232

26.1
26.2
26.3

27.1

39.1
39.2

Standard Make Variables L. L 421
Memory Map of an Array L L e e e e e 450
Memory Map of listand i L 451
Time Table L e e e 470
Temperature o e e e e e e e e e e e e 470
Generic 2D Matrix e 471
Common Orders of Operation ittt s e e e 480
Computation Time Line 564

Package Manager Comparisono e e 566

The Research Computing User’s Guide 1/574

October 16, 2023

0.1 Acknowledgments

Many thanks to (in alphabetical order) Aishwarya Shrestha, Anisha Tasnim, and Shamar Rhadre Webster, for extensive feedback
and corrections.

0.2 Practice Problem Instructions

* Practice problems are designed to help you think about and verbalize the topic, starting from basic concepts and progressing
through real problem solving.

* Use the latest version of this document.
* Read one section of this document and corresponding materials if applicable.
* Try to answer the questions from that section. If you do not remember the answer, review the section to find it.

* Do the practice problems on your own. Do not discuss them with other students. If you want to help each other, discuss
concepts and illustrate with different examples if necessary. Coming up with the correct answer on your own is the only way
to be sure you understand the material. If you do the practice problems on your own, you will succeed in the subject. If you
don’t, you won’t.

If you’re still not clear after doing the practice problems, wait a while and do them again. This is how athletes perfect their
game. The same strategy works for any skill.

* Write the answer in your own words. Do not copy and paste. Verbalizing answers in your own words helps your memory and
understanding. Copying does not, and it demonstrates a lack of interest in learning.

Answer questions completely, but in as few words as possible. Remove all words that don’t add value to the explanation.
Brevity and clarity are the most important aspects of good communication. Unnecessarily lengthy answers are often an attempt
to obscure a lack of understanding and may lead to reduced grades. "If you can’t explain it simply, you don’t understand it well
enough." -- Albert Einstein

* Check the answer key to make sure your answer is correct and complete.

DO NOT LOOK AT THE ANSWER KEY BEFORE ANSWERING QUESTIONS TO THE BEST OF YOUR ABILITY. In
doing so, you only cheat yourself out of an opportunity to learn and prepare for the quizzes and exams.

* ALWAYS explain your answer. No exceptions. E.g., justify all yes/no or other short answers, show your work or indicate by
other means how you derived your answer for any question that involves a process, no matter how trivial it may seem, draw a
diagram to illustrate if necessary. This will improve your understanding and ensure full credit for the homework.

* Verify your own results by testing all code written, and double checking short answers and computations. In the working
world, no one will check your work for you. It will be entirely up to you to ensure that it is done right the first time.

* Start as early as possible to get your mind chewing on the questions, and do a little at a time. Using this approach, many
answers will come to you seemingly without effort, while you’re showering, walking the dog, etc.

 For programming questions, adhere to all coding standards as defined in the text, e.g. descriptive variable names, consistent
indentation, etc.

0.3 Best Practices for Students and Instructors

0.3.1 Take Ownership of your Education

Read this text, and everything else, with a critical eye. Don’t fall for the appeal to authority fallacy, believing that the author
of a book is an expert and therefore must be right. It’s almost certainly true that someone who wrote a book about a subject

The Research Computing User’s Guide 2/574

knows much more than you do, but they are not infallible. They make mistakes and still have a few misconceptions despite all
the experience and research that went into writing the book. The only way to be certain of any assertion is by checking the facts
for yourself, or applying sound logic to infer conclusions that available facts do not indicate directly.

On that note, don’t blame your teachers, book authors, or anyone else for your misconceptions, even if they did misinform you.
Doing so only highlights gullibility. To quote Obi-Wan Kenobi: "Who’s the more foolish, the fool or the fool who follows?"

Go well beyond what you learn in your classes. Your teachers know a tiny fraction of what you’ll need to know during your
career. They only have time to teach you a tiny fraction of what they know. If all you know when you graduate is what you
were spoon-fed in lectures, you won’t have much to offer your employer. All employers care about grades, but the better ones
care more about what you’ve done beyond your classes. This shows a real interest in your field and shows the ability to solve
problems independently. Develop this ability while in college so that potential employers will see you as an asset to their team.

0.3.2 Note to Lecturers

Instructors should maintain a reasonable pace in lectures. Be thorough, but don’t rush. Give students the opportunity to ask
questions during lecture. On the other hand, don’t try to make every student understand perfectly during lectures. This is not
possible. Most learning comes from practice outside of class. If the course includes labs or discussions, allow them to serve
a purpose as well. The purpose of lectures is to give students material to think about and practice, so that the time they spend
practicing outside of lecture will be productive.

If there is a lab/discussion associated with this course, one simple example should suffice for each topic in lecture. Additional
examples can be covered in lab/discussion and in the homework. If there is no lab/discussion, then an additional example may
be appropriate in some cases, but students should still be expected to practice outside of class.

0.3.3 Making the Most of Class Time

Learning results from TIME and REPETITION. Lectures only provide material for students to practice. Don’t expect to leave
a lecture, discussion, or lab session of any class with a deep understanding of the material. Take detailed notes in class, read
the course materials, and then immediately start practicing by trying to put it to use. We provide an extensive set of practice
questions for this very purpose. Without practice to cement in the concepts, you will forget quickly. Use it or lose it.

Study early so your brain has time to digest the material. Study often to reinforce the neural connections that make up long-
term memory. The learning process literally involves rewiring your brain, which is a slow biological process that cannot be
accelerated.

Note OK, that's a white lie: It has been shown that traumatic experiences result in long-term memory comparable to an
extensive amount of practice. However, scaring the pants off of students is not a practical way to help them learn.

Everyone should take pencil and paper notes during lectures rather than rely on online materials. Take notes on everything, even
if you think you know it already. Review these notes first to ensure there are no major gaps in your knowledge. The act of
writing or explaining something has a powerful effect on memory and understanding. Writing something once does as much for
your memory and understanding as reading it ten times. Don’t sit back and be passive about your education. That strategy will
backfire. You’ll learn much more with less effort by actively engaging.

0.3.4 Run the Whole Race

Make sure you get off to a good start so the rest of the semester won’t be a struggle to catch up.

If you do have a good start, don’t fall victim to the common tendency to think you can coast for a while. Some topics will be
harder for you than the ones you just aced. What’s hard varies from student to student, so ignore what others are saying about it,
and just put in the amount of effort that you need to. Be thorough about studying every topic throughout the semester, regardless
of how you’ve done on previous topics. If you just do that, you’ll do well overall.

The Research Computing User’s Guide 3/574

0.3.5 Abandon your ego

In general, if you want to know whether you want someone in your life, observe them for a while and see if they can laugh at
themselves. If not, smile, walk away, and don’t look back.

One of the most important goals in any scientific education is to get over the fear of being wrong. Ego is the enemy of real
science and engineering. Abandon it. Learn to feel comfortable making suggestions and having them shot down. Maybe it was a
good suggestion and others just aren’t seeing it. Maybe it was a dumb idea and you’re not seeing it. Don’t get upset either way.
Laugh it off for now, keep thinking about the problem, and let the situation play out over time.

Transition your thinking from "My code sucks, what am I doing in this field?" to "My code sucks, how can I improve it?".
Top-notch scientists and engineers are completely humble, emotionless, and objective about their work. They abandon bad ideas
without hesitation, embarrassment, remorse, and focus all their energy on finding better ones. They are grateful when others
point out their mistakes.

The sooner we let go of bad ideas, the less time we will waste trying to make them work, and the more time we can spend at the
beach. A happy, balanced engineer will accomplish more in 8 hours a day than one who struggles for 16 hours a day and has no
fun because [s]he can’t admit a mistake. Take your pick. It’s entirely up to you which one you want to be.

All that really matters is that we keep moving forward. It won’t always be quickly enough to get straight A’s, and that’s fine. Just
put in a solid effort and you will grow as a result. Growth is more important than grades.

0.3.6 Why do Quality Work?

Every customer wants a quality product, but what’s the real motivation for creating them? Why should we write fast, reliable
programs? Why design fast, reliable, inexpensive hardware? So the boss will give us a raise? Probably not. Most bosses wouldn’t
recognize quality work if it licked their face. So we’ll be admired by our peers? No, doesn’t really work. Most of them will just
become jealous and trash you on social media.

Think about how often you’ve wasted time waiting for something that seems inexplicably slow, or worse, breaks down so you
have to start over. As a result, you missed happy hour, your kid’s soccer game, or something else you were really looking forward
to. Low quality products cause massive amounts of wasted time and aggravation. The best reason to do quality work is to help
everybody (including yourself) get their work done quickly and correctly, so we can all spend more time with our families and
friends. Quality work makes everybody’s lives better. This is how you can have a positive impact and garner real appreciation as
an engineer.

So how to we get there? Some would say "take pride in your work". But this often backfires, because it depends on what makes
an engineer proud. Many engineers are proud of how clever they are. While a normal person would say "If it ain’t broke, don’t
fix it.", many engineers say "If it ain’t broke, it doesn’t have enough features yet.". Clever engineers make things needlessly
complicated to prove that they’re clever. Wise engineers make things as simple as possible so they will be reliable, inexpensive,
and easy to use. Remember this simple equation:

cleverness * wisdom = constant

Remember KISS (Keep It Simple, Stupid). If you follow this ideal, you’ll be a top-notch engineer.

0.3.7 Stick to the course materials

The materials provided for this course are all you should need to succeed. Do not trust alternative information from web forums
such as stackoverflow.com, geeksforgeeks.org, etc. These sites do not provide curated information. Anyone with a web browser
can post their opinions there. Most of the information on these sites ranges from suboptimal to complete rubbish. If you really
must look to web forums for information, be sure to verify any assertions you find there via experimentation or more reliable
sources. Never believe the first answer you find on a web forum.

Outside sources should only be used to help you understand the course materials, and rarely for this purpose. They should never
be trusted as a substitute. If anything in the course materials is unclear, it is better to contact the instructor than to use outside
materials for clarification. This will prevent you from getting things wrong, and will help the instructor improve the course
materials.

If there is anything in the course materials you don’t understand, RISE TO THE CHALLENGE IMMEDIATELY and make sure
you master the material. Don’t try to work around it by finding a quicker, easier way to get the homework done. Doing the latter
will only cause you to fall behind in the class and you will not do well in the end.

The Research Computing User’s Guide 4/574

0.3.8 Homework, quiz, and exam format

Most questions are short answer, coding, or diagram format rather than true/false or multiple choice. The act of explaining a
concept goes a long way toward helping you remember and understand it, so writing out the answer in your own words is a far
better learning experience than picking the answer out of a list.

In fact, you can help yourself understand the material better by explaining it to your mom, your cat, or anyone else with the
patience to listen to nerdy ramblings about computer science.

Also, the real world is not multiple choice. Good luck finding a job where your boss solves all the problems and pays you to
pick the correct solution from among several incorrect ones. The real world is open book, but it also has time limits, so you do
not want to rely on references entirely. You need important knowledge internalized in order to be productive. The goal here is to
practice for that scenario.

0.4 Motivation and Goals

0.4.1 Why Are We Here?

The difference between what is being accomplished in scientific computing today and what could be accomplished, using existing
inexpensive and free tools, is staggering. Many researchers spend months struggling to do simple computational analyses that
could be done in a few hours with the right tools and knowledge. Worse yet, they often give up, leaving potentially life-saving
research unfinished. The entire reason for all of this unrealized potential is a simple lack of proper education.

A major problem in scientific computing is people who know just enough to be dangerous. Many computational scientists know
a little Unix, a little scripting, a little Python, and a little C or C++. This leads to badly designed programs and scripts that waste
computing resources and make it difficult or impossible to reproduce results, a cornerstone of all science.

This book and this course are here to address these issues by showing how to use many of the amazing tools available for free,
manage the software you need with minimal effort, and write software of your own as efficiently as possible. We will focus on
depth, not breadth, so that you will learn how to do things well. The hope is that you will then carry these good habits forward as
you develop more breadth of knowledge. Perhaps someday you will teach others as well, so that the benefits of this knowledge
will continue to spread far and wide.

0.4.2 Damn it Jim, I'm a Scientist, not a Systems Programmer...

Why should researchers learn about computing? Because nobody can do it for you. Some researchers cling to the dream of hiring
computer staff to handle these things, so they won’t have to learn and do it themselves. This is unrealistic for several reasons:

* There aren’t enough computer experts around to fill even a small fraction of the needs in scientific research.

* Even if the talent existed, we couldn’t afford it. Most computer professionals with these skills are earning six figure salaries.
This is more than most PIs (principal investigators) doing scientific research will ever earn.

» Computer staff would need to be trained in your field of research before they can do anything more than manage computers for
you. Writing software to conduct computation research requires a level of expertise in the domain typically only achieved by
experienced researchers.

The bottom line is, if you don’t have the computing skills to do your own computational analysis, your research will likely be
severely delayed or stalled entirely.

There is an enormous gap between what many researchers want and what is feasible. Many researchers wish for easier ways to
do their research computing, including graphical user interfaces or web-based interfaces to software. Convenient point-and-click
interfaces help people avoid learning the things they fear such as the Unix command line, scripting, and programming. However,
the manpower to build and maintain these interfaces does not exist and never will. Building and maintaining convenient user
interfaces is astronomically expensive and the research community has only a tiny fraction of the resources necessary to pay for
it. The interfaces that are developed tend to be very limiting and unreliable.

The Research Computing User’s Guide 5/574

Avoidance is counterproductive and futile. It not only delays the inevitable need to learn other approaches, it also wastes resources
attempting to create more convenient interfaces that will likely never be finished or maintained. If you do manage to find a
convenient user interface that works for you, chances are it will be abandoned soon, which means your research will not be
reproducible.

Basic tools, such as the Unix command line and scripting languages, are widely used by a broader audience than the research
community. As a result, they are better maintained, more reliable, and better supported. By using them, we leverage the vast
resources of other industries much wealthier than we are. Learning to use them now will be much easier than resisting and giving
into the inevitable later. It will also mean more research progress in the meantime.

I spent nearly ten years holding together an understaffed research computing support group. During that time, it became clear
that struggling to hire and retain the support staff needed to assist thousands of researchers across campus was a hopeless cause.
The only solution to the support problem is to make the researchers more self-sufficient. The required skills are not difficult to
learn. A small investment of time will produce a huge payoff for your research output.

0.4.3 Solutions Looking for Problems

Beware the tendency to confuse tools with fields of study. Many professionals deliberately study specific technologies for their
own sake, such as virtualization, containers, machine learning, specific languages and operating systems, etc. It is often necessary
to focus on the technologies while learning them, but not such a good idea when applying them. E.g. using machine learning
to optimize the organization of your sock drawer might be useful as a learning exercise, but would be foolish as a real-world
solution.

Problems arise when we try to apply the tools we have invested in learning to solve every new problem they encounter. This is
a backward approach to problem-solving that usually leads to a very suboptimal solution at best. It is unfortunately a common
mistake, however. When all you have is a hammer, everything looks like a nail. Shoe-horning problems into a solution that you
think is "cool" or one that you already know generally leads to wasted effort and computing resources. Unfortunately, the world
is full of techno-geeks selling over-complicated solutions to simple problems that could be handled much more cost-effectively.

To find the best solution for a problem, we must look for the best solution for the problem. Sound obvious? It is. Nevertheless,
many people don’t think this way and instead look for ways to solve it with their favorite tools. Finding the optimal solution
means examining the problem with an open mind and exploring solutions that we don’t know as well as the ones we do. A
willingness to learn new things every time you take on a new project is the difference between a great engineer or scientist and a
mediocre one.

0.4.4 What You will Learn

The overall goal of this user guide is to provide all the knowledge needed for researchers to get started with research computing.
If you’re a researcher, you will learn to be self-sufficient so that your computational analysis can move forward in the absence of
L.T. staff to help you. If you are one of the few I.T. personnel working in scientific computing, you will learn to use your time as
efficiently as possible, so that you can effectively serve the researchers who vastly outnumber you.

Different users have different needs and most will not need to read all of the chapters of this guide. The guide is divided into four
parts, each of which is focused on the needs of typical types of researchers. You may only need the knowledge presented in one
or two parts, or you may need it all!

After reading this document, you should know:

* How computers are commonly used in scientific research

* How to find (or build) and use available computing resources

* How to use Unix-compatible operating system environments, including BSD, Cygwin, Linux, and Mac OS X
* How to write portable shell scripts to automate the execution of your research tools on any operating system
 The types of parallel computing available today

* How to schedule typical jobs on clusters and grids

The Research Computing User’s Guide 6/574

¢ Where to find more detailed information on all of the above

This document and other information can be found at:

https://acadix.biz/publications.php

0.5 Self-Study Instructions

Note This guide is updated frequently. Printing is recommended only for those who own stock in a paper company.

This guide is organized as a tutorial for users with little or no experience using the Unix command line or parallel computing
resources.

If your institution does not offer a course following this text, you might consider registering for an independent study that requires
turning in the practice problems at the end of each section. This will provide motivation to master the material rather than just
read it and move on. You and the course supervisor should review the guide and select the appropriate chapters and sections for
your study at the beginning of the semester.

0.5.1 Unix Self-Study Instructions

To begin learning the Unix environment, readers should do the following:

1. Get access to a Unix system if you don’t have it already. You will need this to practice running Unix commands and writing
basic scripts. Apple Macintosh, BSD and Linux systems are all Unix compatible. If you are running Windows, you can
quickly and easily add a Unix environment to it by installing Cygwin following the instructions in Section 3.4.1.

2. Thoroughly read Chapter 3 up to and including Section 3.9. The remaining sections can be covered later after gaining
some hands-on experience. Do the self-test at the end of each section.

3. Thoroughly read Section 4.1 through Section 4.5. Do the Self-test at the end of each section.

0.5.2 Parallel Computing Self-Study Instructions

To begin learning the basics of parallel computing, readers should do the following:

1. Thoroughly read Chapter 6 and Chapter 7.

2. Read Chapter 8, but don’t expect to understand it perfectly. Just familiarize yourself with the material so it will be easier
to master during your first meeting with a facilitator.

3. If you plan to use the HTCondor pool, skim over Chapter 9.

0.5.3 Instructor’s Guide

A typical 3-credit semester course with 2.5 hours per week lecture time should be able to easily cover all of Part I, introduce
parallel computing concepts and the SLURM scheduler, and possibly touch on Part III, High Performance Programming.

Knowledge of various computational methods is key to helping researchers find the most elegant solution to their research
problems, and avoid the "solutions looking for problems" mentality, which often leads to using overly complex approaches.
Students must be taught to focus first on the problem, explore all potential solutions, and choose the simplest among them, rather
than the sexiest. Many will gravitate toward using machine learning, GPUs, parallel programming, etc. in order to impress
people, where much simpler solutions would have worked.

https://acadix.biz/publications.php

The Research Computing User’s Guide 71574

A solid base in the Unix command-line and shell scripting is important, as most researchers waste time or outright fail to succeed
due to lack of knowledge in these areas. I've seen many cases where badly written scripts slow down an analysis by an order of
magnitude or more. Also problematic are non-portable programs and scripts that work on Ubuntu, but not RHEL, or on most
Linux systems, but not Mac or vice versa. The Unix and scripting chapters emphasize portability and provide guidance on how
to avoid non-portable "-isms".

A quick introduction to high performance programming is highly valuable, since most incoming students (even computer science
students) will not know the difference between compiled and interpreted languages, or that software can be made to run signifi-
cantly faster with an understanding of memory hierarchy and other hardware specifics. Just raising awareness of what is possible
with the right software development choices will help them avoid wasting time going sideways.

0.5.4 Digging Deeper

The later sections of high performance programming and parallel computing, along with the parallel programming chapter, are
best tackled after becoming comfortable with basic HPC/HTC usage, or in separate courses.

OK, enough talk. Let’s get you guys edumacated...

The Research Computing User’s Guide 8/574

Part 1

Research Computing

The Research Computing User’s Guide 9/574

Chapter 1

Computational Science

1.1 Introduction

1.1.1 So, What is Computational Science?

Nope, it’s not the study of computation. That would be computer science.

Computational science is any method of scientific exploration involving the use of computers. This may involve using computer
models directly for experimentation or using computers to analyze data from experiments performed by other means.

1.1.2 Not Just for Nerds Anymore

Computation has been a core part of mathematics, physics, chemistry, and engineering research for decades. It is rapidly gaining
popularity in other areas of research such as biology, psychology, economics, political science, and just about any other discipline
you can think of.

This trend is due in part to the introduction of other technologies into these fields, such as rapid gene sequencers and imaging
technology such as MRI (Magnetic Resonance Imaging). These new technologies generate vast amounts of data that require
significant computing resources to store and process. Researchers in these fields often spend the majority of their time on the
computer and only a small fraction in the wet lab. If you don’t like computer work, you may want to reconsider becoming a
geneticist or MRI researcher.

The trend is also due to computer technology itself facilitating the storage and use of vast amounts of data in all walks of life.
The evolution of fast, cheap computer technology and the Internet has made it possible to archive detailed records of things like
election results and sales records and make them easily available to almost anyone in the world. There are many researchers
these days who don’t collect their own data, but simply use archives collected by others in the past.

1.1.3 The Computation Time Line

In doing computational science, we ultimately have a few key goals:

* Minimize the wall time, the total time from the moment we decide what we want to do, to obtaining good quality results from
the software we run.

* Minimize man-hours, the amount of time we spend doing manual work.

* Minimize computer time, the amount of time we wait for the computer to do its part.

These goals almost always go hand-in-hand, but occasionally there may be a trade off, where we sacrifice more man-hours to get
results sooner, or accept a delay in results to save precious man-hours.

The Research Computing User’s Guide 10/574

The figure below represents the time line of computational science project, showing typical time requirements for developing the
software, deploying (installing) the software, learning the software, and finally running the software.

Any one of these steps could end up taking the majority of your time, so we need to consider all of them when devising a strategy
for achieving our goals. This text will discuss ways to minimize the time required for each step as well as potential trade-offs
involved.

Development Time Deployment Time Learning Time Run Time
Hours to years Hours to months (or never) Hours to weeks Hours to months

Table 1.1: Computation Time Line

1.1.4 Development Time

Developing software is inherently time-consuming. Large programs may require many thousands of man-hours to specify, design,
implement, and test.

Fortunately, most researchers do not need to write major software of their own. There are many commercial and open source
programs available to assist in a wide range of research methods. Many researchers will need to do some level of programming,
however. If there is no quality free software for your research, the cost of commercial software or hiring a programmer may be
beyond your means and likely to cause major delays even if you can afford them. It is a good idea to learn now and practice
regularly so you’re ready when you have to write some code of your own.

1.1.5 Deployment Time

Deploying software can and should be quick and easy. Unfortunately, many researchers are not aware of efficient deployment
methods and often end up wasting time or even failing entirely to get software installed. This is a major obstacle to important
research, which we will discuss in detail a bit later.

All software installations should be doable in seconds or minutes. They should not require hours, days, weeks, or months. If
they do, then either you or the software developers are doing something wrong. Don’t accept difficult software installations as a
normal part of doing research.

1.1.6 Learning Time

Learning time is largely a matter of focus and quality of documentation. All I can offer here is some advice: Do your homework,
locate the best sources of documentation, and invest some time in studying it without distraction.

1.1.7 Run Time

Run time depends on many factors, such as the algorithms used by the program, the language used to implement it (compiled
languages are many times faster than interpreted as discussed in Section 13.5), and the hardware it runs on.

Many scientific programs are extremely poor quality and could be made to run hundreds or even thousands of times faster with
the right programming skills. Optimizing the software should always be done before throwing more hardware resources at it.
When it is not feasible to make the program faster, one might consider using parallel computing resources. However, doing
so before optimizing the software would be an unwise and possibly unethical waste of costly resources. There is also a steep
learning curve involved in using parallel resources that can be avoided by improving the program first.

1.1.8 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

The Research Computing User’s Guide 11 /574

1. What kind of research are you currently conducting, and how might computers be used to further your goals?
How does computational science differ from computer science?

What areas of research benefit from computational science?

Describe two reasons that computational science is growing so rapidly.

What are the major goals in the computational time line?

What are the major steps in the computational time line? Which one takes the longest?

A U i

Can researchers avoid programming entirely? Why or why not?

1.2 Common Methods Used in Computational Science

Some of the most common computational science techniques are described below. However, this is not meant to suggest that
they are the only ways to use computers for research. The only true limits are imposed by your own imagination.

1.2.1 Numerical Analysis

Numerical analysis applies to many processes that occur in the real-world that can be modeled by mathematical equations.
Unfortunately, many of these equations, while seemingly simple, cannot be solved directly by known analytical methods. The
techniques taught in algebra, trigonometry, and calculus courses, while extremely powerful, apply to only a small fraction of the
complex real-world models that researchers encounter.

Numerical analysis takes care of the rest. For many models where it is difficult to find the answer, but easy to verify it, numer-
ical analysis can be used to produce an approximation as precise as we want. Numerical techniques generally involve clever
techniques to successively improve guesses at the answer or convert the model into a system of equations which can be solved
directly. Both of these methods are tedious to perform by hand, but well-suited to a fast computer.

The classic first example often used in numerical analysis courses is Newton’s method for estimating the roots of an equation
(where the graph of the equation crosses the x axis). The aim is to answer the question: "For what value(s) of x does f(x) = 0?".

While finding the roots of some equations is not easy to do directly, it is generally easy to compute f(x) for any value of x and
see how close it is to 0.

Now for the clever part: In most cases, a line tangent to f(x) will cross the x-axis at a point closer to a root than x. This can be
visualized by drawing a graph of an arbitrary function, and a series of tangent lines.

Tangent 1 y
AN A
o . Guess1l Guess?2
_ N 5 :
X
™~

The Research Computing User’s Guide 12/574

The equation for the tangent line is easily computed using x, f(x), and f’(x), the slope of the curve at f(x). The root of the tangent
line (where the tangent line crosses the x axis) is then easily calculated using the equation for the line. This becomes the next
"guess" for the root of the equation. With rare exceptions, this next guess for x will be closer to the root than the previous x.
We continue this process until f(x) is sufficiently close to O or until the difference between subsequent guesses at x is sufficiently
small.

1.2.2 Computational Modeling

Computational models simulate real-world processes, following the relevant laws of math and physics.

Models might simulate the motion of individual molecules in a fluid or solid, or larger cells of fluid such as oil in an engine, water
in the ocean, or air in the atmosphere. The weather forecasts we rely on (and complain about) are determined mainly through the
use of large-scale fluid models utilizing measurements of temperature, pressure, humidity, and wind throughout the planet.

Models are also used to simulate traffic flow on roads and expressways that have not yet been built, usage patterns in buildings
still in design phase, and population growth and collapse in remote ecosystems, to mention just a few more cases. Scientists,
engineers and architects use models to find out things in advance that could otherwise get them in trouble, like "Will closing a
lane during rush hour cause a traffic jam?" or "What will happen if we only put a bathroom on every other floor?".

1.2.3 Data Mining

The term "mining" traditionally refers to digging through vast amounts of earth to find small amounts of valuable minerals. The
minerals are generally a very small fraction of the earth that’s removed, and it requires a lot of work to find and separate them.

There are also vast amounts of data stored on computers that contain small amounts of information of interest to a particular
researcher. Data mining is the process of sifting through these data for "interesting" information.

There are many possible approaches to data mining. The ultimate goal is to have a computer search through huge archives or
databases of information without human intervention and automatically identify items or patterns of interest. This is not always
feasible, so a more practical goal is often to have the computer do as much as possible and simply minimize the human labor
involved.

Depending on the type of information being searched, teaching a computer to identify truly interesting patterns can be fairly
difficult and may require the use of artificial intelligence techniques. For example, a now-famous data mining experiment used
to search hospital records for patterns initially reported that all of the maternity ward patients were women.

This underscores the fact that while computers are powerful tools that can do many things far faster and more accurately than
humans, there are still many tasks that require human knowledge and reasoning.

The Research Computing User’s Guide 13 /574

1.2.4 Parameter Sweeps

Numerical analysis uses techniques to progressively improve guesses at the solution to a problem. Unfortunately, sometimes we
can’t come up with a clever method of improving on our current guess and we simply have to test every possible answer until we
find one that works.

A parameter sweep tests a range of possible answers to a question, until at least one correct answer is found, or until all possible
answers have been checked in order to determine a near-optimal set of parameters. It is a brute-force approach to answering
questions where directly computing the answer is not feasible.

It may involve repeating a set of calculations with numerous combinations of multiple parameters in order to determine the
optimal set of parameters.

An example involving a single parameter is the brute-force password hack. Passwords are stored in an encrypted form that
cannot be directly converted back to the raw password. Since it is the raw password that must be entered in order to log into
a computer, this effectively prevents unauthorized access even if the encrypted passwords are known. This is important since
many passwords must be transmitted over networks in order to log into remote systems such as email servers. Hence, it is often
difficult or impossible to prevent encrypted passwords from becoming known.

While it is practically impossible to decrypt a password, it is relatively straightforward to encrypt a guess and see if it matches
the known encrypted form.

The main defense against this type of brute-force attack is forcing the attacker to try more guesses, i.e. maximizing the parameter
space that must be swept. An 8-character password randomly consisting of both upper and lower case English letters, digits, and
punctuation has (26 + 26 + 10 + 32)8 = 6.09 x 10! possible patterns (based on a US-English keyboard).

If a computer can encrypt and compare 100,000 guesses per second, it will take 1,932 years to sweep the entire parameter space.
On average, it will take half that time to find one particular password with these qualities.

On the other hand, if the attacker knows that your password is a 10-letter English word with a mix of upper and lower case, then
based on the size of the Oxford English dictionary (about 170,000 words), there are only about (170,000 * 210) = 174,080,000
possible passwords. At 100,000 guesses per second, it would take the hacker’s tools at most 1741 seconds = 29 minutes to find
your raw password.

For this reason, a password should never be any kind of derivative of a real word.

The worst kind of password, of course, is anything containing personal information. Many computer users think they’re out-
smarting hackers by putting a digit or two after their name to form a "secure" password. Hackers have a standard list of items
commonly used by people just begging to get hacked, such as their name, birthday, pet’s name, favorite color, etc. Most of this
information is readily available online thanks to sites like Facebook. Checking every item in this list followed by every possible
number from 1 to 999 (e.g. from azure0 to zebra999) will take only a fraction of a second on a modern computer.

1.2.5 Data Sifting

In some cases, there are just gobs and gobs of raw data to be sifted and checked for known or expected patterns. This is different
from data mining in the sense that the human programmers know what to look for.

Examples of this type of computational research are well illustrated by the @home projects, such as Einstein@Home, which
searches data from laser interferometer gravitational-wave observatory (LIGO) detectors for evidence of gravity waves. The
LIGO detectors unfortunately don’t beep when they spot a gravity wave. Instead, they generate enormous amounts of data, most
of which will not show any evidence of gravity waves, but nevertheless must be examined thoroughly. The Einstein@Home
project uses massive numbers of personal computers around the world, each sweeping a small segment of the LIGO raw data.

1.2.6 Monte Carlo

Monte Carlo simulations, named after the gambling city in the French Riviera, utilize random numbers and simulation to piece
together answers to scientific questions.

The method actually looks similar to a parameter sweep or data sift in that the same calculations are done on a large number of
different inputs. However, the Monte Carlo method uses random inputs rather than a predetermined set of inputs. The random
numbers generated are generally designed to be representative of the entire possible range, while being a fraction of the size.

The Research Computing User’s Guide 14 /574

For example, the average of a small, but truly random sample of a population is generally very close to the true average of
the entire population. This mathematical fact makes many experiments possible in the humanities and social sciences, where
sampling every member of a society is practically impossible.

A classic example of the Monte Carlo method is the estimation of the value of pi using a dart board.

Suppose we have a square dart board with a circle inscribed:

The area of the circle is PI * (1/2)> = PI/4. The area of the square is 1. The ratio of the area of the circle over the area of the
square is therefore P1/4.

If a bad enough darts player throws a large number of darts at the board, darts will end up randomly and uniformly distributed
across the square board (and probably the surrounding wall). If and only if the darts are randomly and uniformly distributed, the
ratio of the number of darts within the inscribed circle over the number of darts within the entire square board will then be close
to pi/4.

Statistically, the more darts are thrown, the closer the ratio will get to pi.

Naturally, this process would take too long with a real dart board, so we might instead choose to simulate it on a computer.
Most programming languages offer the ability to generate pseudo-random numbers within some fixed range with a uniform
distribution. By randomly generating a sequence of x and y values with a uniform distribution, we can rapidly simulate throwing
darts at a board and quickly develop an estimate for pi.

1.2.7 Everything Else

The previous sections outline some of the commonly used methods in computational science.

Researchers can explore and understand these methods and also discover or invent new methods of their own for using computers
in their research. The computational capacity of today’s computers is both vast and vastly underutilized. The possibilities for
computational research are almost limitless and bounded only by the skills and imagination of the researcher.

It is our hope that more researchers will simply begin to consider how computational methods might improve their research and
then develop the skills and knowledge to tap into the vast and freely available hardware and software resources that are waiting
to be utilized.

1.2.8 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Why are numerical analysis techniques so important to science and engineering?

The Research Computing User’s Guide 15/574

2. Explain Newton’s method for finding the roots of a function. Use a graph to illustrate.

3. What is computational modeling? Describe two examples of processes commonly modeled on computers.

4. What is data mining? What is one of the major challenges in designing useful data mining software?

5. What is a parameter sweep? Describe one task that requires a parameter sweep. Is doing parameter sweeps desirable?
What is data sifting? Describe one real-world example that requires data sifting.

‘What is a Monte Carlo simulation?

® =N

Can you think of any computational science methods that do not fall into one of the categories described here?

1.3 Venture Outside the Computer Science Bubble

If you’re a computer scientist, you likely have a different perspective on computers than people in other fields. Computer scientists
tend to focus on learning about technologies and look for ways to apply them as an afterthought, i.e. the solutions looking for
problems perspective.

Researchers in other fields often, but not always, take the opposite perspective, focusing on the problem and looking for tech-
nologies with which to solve it. The solution may or may not involve computers. If it does, it may not involve the skills that you
are trying to market. That said, people in all fields may be prone to misapply their favorite solutions to inappropriate problems.

Computer scientists should frequently seek out and have conversations with people in other fields who rely on computation, in
order to understand their perspectives and needs. This will greatly broaden your perspective and help you better serve potential
customers, possibly by telling them that there are more effective solutions to their problems than you can offer with your limited
skill set. It will help you understand what skills you really should be building, which may be different than what you’re hearing
in the computer scientist echo chamber.

Note also that demand for specific skills, such as a particular programming language, machine learning, GPU programming, etc.
will wax and wane over time. Problem-solving skills will always be in demand.

1.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. How does the perspective of computer scientists and engineers often differ from that of scientific researchers? Which
perspective is better?

The Research Computing User’s Guide 16 /574

Chapter 2

Where do | get the Software?

2.1 But | Hate Programming...
There are three ways to get the software you need:

1. Buy it.
2. Download it.

3. Write it.

Most researchers today don’t need to do much programming beyond some scripting to automate analyses. There’s a vast number
of both commercial and free software applications available to handle most of the computational needs of researchers, and more
being developed all the time.

The need for researchers who can write basic scripts to automate processing pipelines continues to grow. Existing software
may do all or most of what you need, but not always conveniently. You will likely need to run multiple programs in sequence
to generate the results you need. This sequence is called a pipeline and can often be automated with a simple script. Most
computational researchers should set out immediately to learn Unix and scripting, as described in Chapter 3 and Chapter 4, but
learning hard-core programming will be a lower priority for most.

In many cases, however, solid programming skills could turn out to be a major advantage in the race for research grants.

Unfortunately, most scientific software is very low quality. While there are many well-organized projects around, much of the
software is developed as someone’s thesis and then abandoned after they graduate. The ability to improve or replace low-quality
existing software can remove major barriers to your research.

Also, research by definition involves doing things that have never been done before, and this may require writing new software
to perform novel analyses.

Hiring someone else to do the programming is not feasible for most researchers. Experienced scientific programmers are very
rare, and likely have higher salaries than you do, so you probably can’t afford one even if you can find one. You might find a
student to work with you on the cheap or free (for credit), but most likely they’ll leave you with badly written, unmaintainable
code that the next programmer won’t be able to work with.

The only sustainable solution for most researchers who need code written is to do it themselves. The question, then, is which of
the dozens of popular programming languages should you learn? This topic is covered in detail in Part III.

For now, suffice it to say that you should become adept at Unix shell scripts, one purely compiled language such as C, which
may run hundreds of times faster than scripting languages, and perhaps another interpreted language such as Perl, Python, or R,
whichever is most useful in your field. This topic is discussed in more depth below.

The Research Computing User’s Guide 17 /574

2.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are the three ways to obtain research software?
2. What kind of programming do most researchers need to learn? Why?
3. Why is it a good idea for researchers to learn how to program beyond simple scripting?

4. What is the benefit of learning a compiled language?

22 Buylt

Commercial software packages are generally a good option for complex engineering computations such as fluid dynamics and
finite element analysis. Such software tends to be very costly to develop and therefore exists mainly for needs of wealthy
industries such as automotive, aerospace, pharmaceuticals, etc.

Commercial software is generally only available for a limited number of platforms, usually Windows, Mac, and enterprise Linux
distributions such as RHEL and SUSE. Furthermore, most commercial software is limited to specific versions of the supported
operating systems. For example, some may not run on the latest version of Windows while others will only run on the latest
version of Windows. This can be a nuisance for those who use multiple commercial applications, which may not be available for
the same platforms.

Most commercial software also requires managing licenses that typically limit use to a single computer or require managing a
license server, which most IT professionals agree is worse than a root canal. License servers must remain available nearly 24/7,
so routine maintenance has to be scheduled at times when they would rather be sleeping or on vacation. License management
requires a significant amount of expertise and effort, which should be considered as part of the total cost of ownership (TCO) of
the software.

All that said, where there’s a market for commercial software, the software often offers powerful capabilities not found elsewhere.

Many computer users fear open source software due to the lack of documentation and direct support from the vendor. These fears
are largely unfounded, however. Support for commonly used open source software is usually provided by the user community in
the form of online forums and email lists, which are open to everyone, and easily searchable. For all but the most esoteric issues,
answers to most of your questions are usually already posted on the Internet and easily found with a simple web search.

It’s true that nobody is obligated to help you with free software, but in reality, even in a community where many of the forum
participants are rude and arrogant, there are almost always a few people ready and willing to help. Those who do it well will
politely point you to existing answers to your question, so you can learn to find your own answers in the future. Even the crabby,
rude responses are often helpful, though, and you will learn to be grateful and understanding once you get over the blow to your
ego.

Contrary to common expectations, commercial software support does not guarantee answers to your questions either. Access to
documentation is often restricted to registered customers who must log into a website to view or search it. Hence, a simple web
search may not turn up any answers, because the search engines don’t have access to the documentation or discussions. Phone
support often involves automated menu systems, spending time on hold, and difficulty finding a support person who can answer
the question. The process of finding answers to your questions about commercial software can often take a lot longer than for
open source.

When determining whether to purchase a commercial software product, it’s best to simply decide whether the features are worth
the added purchase cost and effort associated with license management. It may be that the commercial software offers capabilities
or performance that are not currently available in any open source equivalent. If this will greatly improve your productivity, then
it may justify the costs.

The Research Computing User’s Guide 18 /574

2.2.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. List four disadvantages of commercial software vs free open source software (FOSS).

2. For whom is commercial software generally a good option?

2.3 Download It

Fortunately for the vast population of underfunded researchers in most fields, there is a huge and growing collection of open
source software available for research.

Open source software is software for which the source code is freely available. Source code (a collective noun, like "milk" and
"honey") is the program in a human-readable language such as C, C++, Fortran, MATLAB, Python, R, etc. It must be compiled
(translated to machine language by a program called a compiler) or interpreted by a program called an interpreter, in order to run
on a computer. Compiled and interpreted languages are discussed in Section 13.5.

The quality of open source software varies from almost unusable, to better than commercial alternatives. The only way to
determine whether open source software will serve your needs is by exploring the available options. Things can change rapidly
as well, so what you learned about software options a year ago may no longer apply.

The main advantages of open source over commercial software are:

1. It’s usually free.
2. There are no licenses to manage.
3. It will usually run on whatever hardware and operating system you prefer.

4. Installation is trivial if done properly.

On the whole, open source software has come of age. It is now possible for most computer users to do all of their everyday work
using exclusively open source operating systems such as BSD, Illumos and Linux and open source applications such as Firefox
and LibreOffice.

2.3.1 How to Shoot Yourself in the Foot with Open Source Software

Many people fear open source software because they assume it is hard to install and learn. Installation of open source software
is actually far easier than commercial software installations when done properly, using a package manager such as Debian
packages, FreeBSD ports, MacPorts, or Pkgsrc. Package managers became popularized during the 1990s as open source software
availability exploded along with computer speed and storage.

Fear of open source software installations usually arises from a lack of awareness of package managers and subsequent unneces-
sary attempts to perform difficult and poorly-documented "caveman installs", where software is manually downloaded, patched,
built, and installed. Unfortunately, many people still perform caveman installs, mostly because they don’t know any better. I
miss the 1980s too, but nobody should be installing software this way in the 21st century.

Example 2.1 describes a typical caveman install for the R statistics package. Note that this example is relatively simple and
well-documented compared to many.

The Research Computing User’s Guide 19 /574

Example 2.1 A Typical Caveman Install

2.1 Simple compilation

First review the essential and useful tools and libraries in Essential and useful other programs under a Unix-alike, and install
those you want or need. Ensure that the environment variable TMPDIR is either unset (and /tmp exists and can be written in and
scripts can be executed from) or points to a valid temporary directory (one from which execution of scripts is allowed).

Choose a directory to install the R tree (R is not just a binary, but has additional data sets, help files, font metrics etc). Let us call
this place R_HOME. Untar the source code. This should create directories src, doc, and several more under a top-level directory:
change to that top-level directory (At this point North American readers should consult Setting paper size.)

Issue the following commands:

./configure
make

(See Using make if your make is not called 'make’.)
Users of Debian-based 64-bit systems may need

./configure LIBnn=1lib
make

Then check the built system works correctly by

make check

Failures are not necessarily problems as they might be caused by missing functionality, but you should look carefully at any
reported discrepancies. (Some non-fatal errors are expected in locales that do not support Latin-1, in particular in true C locales
and non-UTF-8 non-Western-European locales.) A failure in tests/ok-errors. R may indicate inadequate resource limits (see
Running R). More comprehensive testing can be done by

make check-devel

or

make check-all

See file testssREADME. If the configure and make commands execute successfully, a shell-script front-end called R will be
created and copied to R_HOME/bin. You can link or copy this script to a place where users can invoke it, for example to
/usr/local/bin/R. You could also copy the man page R.1 to a place where your man reader finds it, such as /usr/local/man/manl.
If you want to install the complete R tree to, e.g., /ust/local/lib/R, see installation. Note: you do not need to install R: you can
run it from where it was built. You do not necessarily have to build R in the top-level source directory (say, TOP_SRCDIR).

To build in BUILDDIR, run cd BUILDDIR TOP_SRCDIR/configure make and so on, as described further below. This has the
advantage of always keeping your source tree clean and is particularly recommended when you work with a version of R from
Subversion. (You may need GNU make to allow this, and you will need no spaces in the path to the build directory.)

Now rehash if necessary, type R, and read the R manuals and the R FAQ (files FAQ or doc/manual/R-FAQ.html, or
http://CRAN.R-project.org/doc/FAQ/R-FAQ.html which always has the version for the latest release of R).

Before doing the above, however, one must also install dozens of other prerequisite packages, following a similar process for
each one. This would include a compiler suite, GNU configure, possibly a make utility, and many math libraries on which R
depends.

If you can follow the instructions and all goes well, you may be done with all this in a day or two. More likely, you will struggle
for weeks and ultimately give up. If you’re not using the exact same version of the exact same operating system as the developers,
instructions like these are unlikely to work. Since the developers of the software and all its prerequisites likely use a variety of
operating systems, it’s very unlikely that you’ll get through any installation without running into problems that you’re probably
not qualified to solve.

2.3.2 How Not to Shoot Yourself in the Foot with Open Source Software

Lucky for you, there are thousands of nerds like me creating ports and packages of popular software. As a result, all of the pain
described above can be avoided by simply choosing an operating system with a good package manager and learning how to use
it. The current state of the most popular package managers can be found at https://repology.org/.

https://repology.org/

The Research Computing User’s Guide 20/574

FreeBSD ports, for example, makes it possible to install any one of over 30,000 software packages over the Internet, usually in a
matter of seconds. Instead of following the instructions above from the R developers, a FreeBSD user would simply run:

pkg install R

This single command will automatically download and install R and all the necessary prerequisite packages required to run it.

The pkg command installs a "binary" (precompiled) package built to be compatible with most common CPUs. Binary packages
are built to utilize only CPU features present on most typical systems. For example, an AMD Epyc processor has features not
present in an Intel Core i5 that might make a given program significantly faster. However, binary packages won’t use these
features, because the software would not run on an i5 processor.

With FreeBSD ports, we can just as easily build and install the R package optimized for the local CPU type. It also allows us to
build the package with non-default features and options. The command below will build R, instructing the compiler to use all
CPU features available on the computer doing the build.

cd /usr/ports/math/R
env CFLAGS=-march=native make install

Installations of this type take longer to complete, typically minutes to hours, but they require no more effort on your part than
installing with the pkg command.

FreeBSD ports also provides a menu for selecting build options, as shown in Figure 2.1. Providing this kind of flexibility via
binary packages would mean a separate binary package for every possible combination of options, which is not very practical.

CoreTerminal -

R-4.2.1

[e Use experimental flang Fortran compiler

[x] Icu Unicode support via ICU

[x] INFO Build and/or install GNU info pages

[x] LDOUBLE Long double data type

[1 LETTER US letter paper

[1 MEMPROF Memory profiling via Rprofmem() and tracemem()

[x] NLS Native Language Support

[x] OPENMP Parallel processing support via OpenMP

[x] RPROF R profiling via Rprof()
X11 X11 graphics device

Require X11

CAIROPANGO Cairo graphics device and Pango multi-language tex

GHOSTSCRIPT Graphics device for bitmap files via Ghostscript

JPEG JPEG graphics device

PNG PNG graphics device

TCLTK Tcl/Tk GUI toolkit support

TEXDOCS Build/Install TeX-dependent documentation files

TIFF TIFF image format support

BLAS

ATLAS ATLAS blas implementation

v(+)

<Cancel>

Figure 2.1: FreeBSD Ports Build Options

We can similarly install R via a Debian package on Debian-based Linux distributions (e.g. Debian or Ubuntu) as follows:

The Research Computing User’s Guide 21/574

apt install R

Unfortunately, the Debian package system does not provide an easy way for the average user to build an optimized or customized
version from source. Some package managers, such as FreeBSD ports, Gentoo’s Portage, MacPorts, and pkgsrc are designed to
support conveniently building from source. Others such as Debian packages, RPM, and Conda, are only designed for installing
prebuilt binary packages.

Fortunately, Linux users can use the pkgsrc package manager in addition to native package managers such as apt. Pkgsrc is
designed to work on any Unix-like platform and can exist alongside other package managers (with some care).

More detail on various package managers and how to use them can be found in Chapter 39. In summary, here’s a brief comparison
of caveman installs and package managers:

e Caveman installs are very difficult and require extensive knowledge of software development tools. Package managers make
installing software trivial.

* Upgrading involves the same nightmarish process as the initial installation. In contrast, upgrading R and all other packages
installed via FreeBSD packages is a matter of typing pkg upgrade. To upgrade all your Debian packages, simply run apt
update && apt upgrade.

* Some of the software that the caveman install depends on may come from package managers such as FreeBSD ports or Debian
packages. Upgrading or removing these packages may break the caveman install. R will suddenly stop working and it may be
difficult to fix. Package managers, in contrast, make sure that all of the packages installed are compatible.

* Uninstalling a caveman install requires knowing where all the files are and removing them manually. Using FreeBSD ports,
you would simply run pkg remove R. Using Debian packages, apt remove R.

» Caveman installs might overwrite files installed by other software. Package managers have safeguards that detect conflicts and
prevent this from happening. To get around a conflict with FreeBSD ports, we can install from source to a different installation
prefix.

2.3.3 What if There is No Package?

If there is no package for your software in the package manager you are using, there are likely better solutions than doing caveman
installs for all your software.

* Look into portable package managers such as Conda, pip, or pkgsrc. These can coexist with the native package manager for
your system.

» Switch to a different operating system. This might sound radical, but it’s actually much easier and safer than a lifetime of
caveman installs.

 Learn to create your own packages. This will require an investment of time, but by becoming a package maintainer, you break
your dependence on others for managing the software you need. You will forever have the power to cleanly install, remove,
and upgrade the software you need.

2.3.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are three advantages of FOSS (free open source software)?
2. What can the average computer user do with FOSS nowadays?

3. What is a caveman installation and when should one be performed?

The Research Computing User’s Guide 22 /574

4. What is a package manager?

5. What is an advantage of source-based package managers such as FreeBSD ports, Gentoo Portage, MacPorts, and pkgsrc,
over binary-only package managers such as Debian packages and Conda?

6. What are some of the problems that package managers solve when compared with caveman installations?

7. What can you do besides resort to caveman installations if your package manager doesn’t have a package for your software?

2.4 Containers

Containers are a powerful tool and valuable addition to available software management methods. A container is an isolated
environment in which software runs, separated from software running on the host system and software running in other containers.
As such, containers are a highly valuable tool for sharing system resources in a secure manner. For example, we can run many
web servers on one machine, all completely isolated from each other, so that if any one of them gets hacked, the others and the
host system itself remain safe.

Containers have become a trendy solution looking for problems and as such have found their way into research computing.
There are valid use cases for containers in research. Unfortunately, though, they have become popular as an alternative to quality
software development and build systems. Rather than writing portable software that works with mainstream libraries and is easy
to build and install alongside other applications, many developers have recently chosen to containerize their software so it can
continue to use outdated libraries (often with known bugs and security holes). In other words, containers are often used to sweep
problems under the rug rather than solve them. They essentially become garbage cans full of outdated and low-quality software.

The containerization fad has faded somewhat in recent years as people have begun to see the down side of added overhead and
removing the motivation to fix problems and keep software up-to-date. You may find that they remain the only viable option to
installing certain software, however. Adding such software to package collections is often difficult, since the developers are not
always cooperative about accepting patches to bring it up-to-date with modern libraries, etc. More on this in Chapter 39.

2.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Are containers "good"?

2.5 Finding Research Software

The number of commercial and free scientific software packages is too vast and too rapidly growing to be listed in any book. The
best way to find out about software packages is by searching the WEB for strings such as "finite element software" or "statistical
software".

Talking to colleagues can also be helpful, but keep in mind that they are most likely only knowledgeable about one or a few
packages that they have been using, and may not even be aware of alternatives, especially newer ones. Choosing software solely
on the advice of others is unwise.

Your WEB search will likely lead you to the many Wikipedia articles dedicated to providing an overview of software categories,
such as List of finite element software packages, List of software for molecular mechanics modeling, and List of statistical
packages.

Some software lists are embedded in other articles, such as Data mining.

A good way to get a quick overview of what’s available as established open source projects is looking at the listing of packages
available in one of the top-tier package managers, such as Debian packages, FreeBSD ports, Gentoo Portage, MacPorts, or
Pkgsrc.

http://en.wikipedia.org/wiki/List_of_finite_element_software_packages
http://en.wikipedia.org/wiki/List_of_software_for_molecular_mechanics_modeling
https://en.wikipedia.org/wiki/List_of_statistical_packages
https://en.wikipedia.org/wiki/List_of_statistical_packages
http://en.wikipedia.org/wiki/Data_mining#Software

The Research Computing User’s Guide 23/574

2.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Is it a good idea to trust the advice of a colleague about what software to use? Why or why not?

2. How can you be certain that you are using the best available software for your research?

2.6 Write It

Writing software is time consuming (i.e. expensive), although not nearly as hard as most people make it for themselves. Those
who have the programming skills and esoteric software needs may choose to write their own software.

For these people, choosing the right operating system and the right programming language are critical. All software should be
written to be portable (to run on any operating system and hardware) and computational software must be performant (run as
fast and efficiently as possible). Programs written in a compiled language will run on the order of 100 times faster than the same
program in an interpreted language. See Chapter 3 for more details about operating systems. Section 13.5 discusses language
performance in detail.

Needs may dictate which compiled language you use, but if you have a choice, start with C. It’s much simpler and more portable
than C++ or Fortran. You can learn the language quickly and then focus on improving the quality of your code rather than getting
bogged down in learning more language features. Mastering C++ is a career in and of itself. More on this in Part III.

Interactive software that does minimal computation and is mainly an interface for visualizing data may not need to offer high
performance. In this case, the programming language is chosen for convenience rather than speed. Interpreted languages such
as Python and Matlab are far slower than compiled languages, but offer convenient plotting libraries such as Python’s Matplotlib
that make it easy to create beautiful plots and graphs of your data.

Figure 2.2 shows how gene neighborhoods can be visualized using Matplotlib to understand the changes that have occurred
over the course of evolution. This is part of a software suite called Microsynteny Tools, which includes several computational
programs written in C for optimal performance, and visualization tools written in Python to leverage the convenience and power
of Matplotlib.

Figure 1

atf3 neighborhoods and intergenic distances, genes = 4 max_nt = 1000000
118.5k 75.9k 27.8k 9.3k 6.6k 1.6k 7.0k 6.8k 1.0k
Danio_rerio+ 20 (VEpZan] (BTN, (SEEDN FEERN) R) (EEDN (S (SO (SR
32.6k -3.0k 0.5k 25.8k 12.4k 0.9k 0.5k 4.4k
34.8k 2.1k 2.0k 9.3k 2.3k 7.6k 25.7k 7.3k 11.8k
Oryzins Jatipes- 24 [T {TmEme] (mmmen [EEI) EE)
6.4k 5.2k 13.2k 25.8k 11.9k -3.2k 18.6k 20.0k
3.3k 3.3k 2.6k 6.5k 3.3k 2.0k 7.1k 35.2k 2.9k
Takifugu_rubripes- 16 (BRI FE) (I Menm)) (immed] [oin) [mmed) [Emhn)
8.3k 2.9k 2.2k 16.5k 3.2k 2.1k -22.4k 3.5k
51.7k 25.5k 11.9k 2.3k 48.2k 2.7k 11.5k 23.9k 17.6k
Mus_musculus- 1
15k 8.2k 56.0k 31.8k 5.9k 54.1k 11.8k 0.5k
38.2k 44.8k 35.6k 7.3k 13.8k 2.6k 11.9k 25.4k 15.3k
Rattus_norvegicus-13 [BET)
142.0k 1.9k 0.3k 123.8k 6.6k 42.3k 16.1k 0.4k
72.3k 76.9k 51.4k 13.9k 55.9k 2.8k 13.9k 66.1k 25.5k
Homo_sapiens+ 1 [DTENNN) [PRPSRSA) (PACCINN (RENENN) (FARTIA)
178.5k 2.5k 18.5k 119.4k 4.1k 60.1k 26.8k 0.5k
aes $Qs

Figure 2.2: Visualizing Gene Neighborhoods with Matplotlib

The main goals when writing a program should always be as follows:

» Write as little of it as possible. Even if you cannot find a program that does exactly what you need, there are probably programs
and libraries around that do most of what you need.

The Research Computing User’s Guide 24 /574

* Portability: The code should run on any operating system and and hardware.

 Performance: The program should minimize resource use, including CPU, memory, disk, network bandwidth, etc.
* Reliability: The program should produce correct output and never crash.

* Maintainability: The code should be clean, concise, and easy to read.

* User-friendliness: The program should be easy to use and produce meaningful error messages.

Your time will be much better spent finding established and well-tested software to incorporate into your programs, rather than
writing everything yourself. For example, if your program involves typical matrix operations, there are many highly-efficient
math libraries available that your program can use, such as BLAS, LAPACK, Eigen, Arpack, and METIS, just to name a few.
Writing your own matrix multiplication routine would be an enormous waste of your own time and computer time, since the
prewritten routines in one of the previously mentioned libraries are probably much faster than anything you would write yourself.

Beware: Bad advice on choosing operating systems and languages abounds in most professions. Many people choose things for
irrational reasons, such as finding the appearance pleasing, popularity among friends, etc. A smart selection is based on objective
measures such as portability (does it run on any operating system and processor type?), performance, reliability, price, etc.

2.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are the primary goals in writing any software?
2. What is the main advantage of compiled languages over interpreted languages?
3. What is the main advantage of C over other compiled languages for busy researchers?

4. How much should we rely on the advice of others when choosing a language or operating system? Why?

2.7 Running Your Software

2.7.1 Where do |1 Run It?

Your Own Computers

Many researchers use their own hardware, whether personally owned or company/university owned but for private use. This
provides the most flexibility and also the most responsibility and personal time investment in managing the system.

If your organization manages the computer for you, you will spend less time on I.T. and have more time for research. The down
side is you cannot always get what you want installed on the machine and if you can, you may have to wait.

The advantages to managing your own hardware and software can be significant, but only if you know how to do it well. Many
researchers don’t know how to choose and secure an operating system, fail to keep up with security updates, and rely mainly on
caveman installs for their scientific software. Most such people would be better off letting I.T. manage their machines.

If you are diligent about keeping your system secure and up-to-date and manage your software via package managers, you may
find yourself with a significant edge in the race for research funds.

Note Forming a user-group with colleagues in the field can help everyone learn to manage their systems more effectively and
efficiently.

The Research Computing User’s Guide 25/574

College Computer Labs

Most colleges and universities maintain computer labs with software to serve the needs of their students. Check with your
instructors or department office to find out what’s available to you.

College Clusters and Grids

Some campuses may also have clusters and grids available for parallel computing. If you need to run large simulations, parameter
sweeps, or Monte Carlo simulations, it may be possible to run hundreds at a time instead of one at a time on your PC or a stand-
alone lab PC.

XSEDE, Open Science Grid
The National Science Foundation funds several very large clusters on campuses around the country for general use by researchers
on other campuses.

Use of these resources is free for academic researchers. Small allocations of computing time are easily obtained, while larger
allocations require a more extensive proposal.

Commercial Services

A number of commercial services are also available for those who have the ability to pay as they go.

Amazon EC2, Google Cloud Platform, Azure, and other cloud computing services allow researchers to create their own custom
virtual machines and even virtual clusters. Users pay for CPU time used.

Users of these services can quickly configure virtual machines with a wide variety of configurations such as the number of CPUs,
the type of CPU, the amount of RAM, and the amount and type of storage. The cost is typically a fraction of a penny per
CPU-hour.

The problem for academic researchers is that funding is usually fixed by research grants, so the unpredictable pay-as-you-go
model can be problematic. There may also be significant bureaucracy involved in paying the fees through department channels.

2.7.2 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are the pros and cons of managing your own computer(s) for research vs using computers managed by your organi-
zation?

The Research Computing User’s Guide 26 /574

Chapter 3

Using Unix

Before You Begin

If you think the word "Unix" refers to Sumerian servants specially "trained" to guard a harem, you’ve come to the right place.
This chapter is designed as a tutorial for users with little or no Unix experience.

If you are following this guide as part of an ungraded workshop, please feel free to work together on the exercises in this text.
It would be very helpful if experienced users could assist less experienced users during the "practice breaks" in order to keep
the class moving forward and avoid leaving anyone behind.

3.1 KISS: Keep It Simple, Stupid

Most people make most things far more complicated than they need to be. Engineers and scientists, especially so.

Aside
To the engineer, all matter in the universe can be placed into one of two categories:

1. Things that need to be fixed

2. Things that will need to be fixed after I've had a few minutes to play with them

Engineers like to solve problems. If there are no problems available, they will create their own problems. Normal people don’t
understand this concept; they believe that if it ain’t broke, don't fix it. Engineers believe that if it ain’t broke, it doesn’t have
enough features yet.

No engineer can look at a television remote control without wondering what it would take to turn it into a stun gun. No engineer
can take a shower without wondering whether some sort of Teflon coating would make showering unnecessary. To the engineer,
the world is a toy box full of sub-optimized and feature-poor toys.

-- The Engineer Identification Test (Anonymous)

Avoid people who tend to look for the most "sophisticated" solution to a problem. Those who look for the simplest solution are
more productive, more rational, and more fun to have a beer with. For more amusement on the subject, look up the story of the
king’s toaster.

Simplicity is the ultimate sophistication. We achieve more when we make things simple for ourselves. We achieve less when
we make things complicated. Most people choose the latter. Complexity is the product of carelessness or ego. Simplicity is the
product of a wisdom and clarity of thought.

The original Unix designers were an example of wisdom and clarity. Unix is designed to be as simple and elegant as possible.
Some things may not seem intuitive at first, but this is probably because the first idea you came up with is not as elegant as the
Unix way. The Unix developers had the wisdom to constantly look for simpler ways to implement solutions instead going with

The Research Computing User’s Guide 27 /574

what seemed intuitive at first glance. Learning the Unix way will therefore make you a wiser and happier computer user. I speak
from experience.

Unix is not hard to learn. You may have gotten the impression that it’s a complicated system meant for geniuses while listening
to geniuses talk about it. Don’t let them fool you, though. The genius ego compels every genius to make things sound really
hard, so you’ll think they’re smarter than you.

Another challenge with learning anything these days is filtering out the noise on the Internet. Most tutorials on any given subject
are incomplete and contain misinformation or bad advice. As a result, new users are often led in the wrong direction and hit a
dead end before long. One of the goals of this guide is to show a simple, sustainable, portable, and expandable approach to using
Unix systems. This will reduce your learning curve by an order of magnitude.

Most researchers don’t know enough about Unix. As a result, their productivity suffers dramatically. Unix has grown immensely
since it was created, but the reality is, you don’t need to know a lot in order to use Unix effectively. You can become more
sophisticated over time if you want, but most Unix users don’t really need to. It may be better to stick to the KISS principal
(Keep It Simple, Stupid) and focus on learning to use the basic tools well rather than learning a huge collection of tools and using
them poorly. It’s quality vs quantity. Knowledge is not wisdom. Wisdom is knowing how to apply it effectively.

Aside Einstein was once asked how many feet are in a mile. His reply: "l don’t know. Why should I fill my brain with facts | can
find in two minutes in any standard reference book?"

Many martial arts students like to collect "forms" (choreographed sequences of moves), for the sake of bragging rights. Knowing
more forms does not improve one’s Kung Fu, however. The term Kung Fu essentially means "skill". A master is someone who
can demonstrate mastery of a few forms, not knowledge of many. This depth of understanding does far more for both self-defense
capability and personal development than a shallow knowledge of many forms. Develop your Unix Kung Fu in the same way.
Aim to become a master rather than an encyclopedia.

Unix is designed to be as simple as possible and to allow you to work as fast as possible, by staying out of your way. Many
other systems will slow you down by requiring you to use cumbersome user interfaces or spend time learning new proprietary
methods. As you become a master of Unix, your productivity will be limited only by the speed of the hardware and programs
you run.

If something is proving difficult to do under Unix, you’re probably going about it the wrong way. There is almost always an
easier way, and if there isn’t, then you probably shouldn’t be trying to do what you’re trying to do. If it were a wise thing to
do, some Unix developer would have invented an elegant solution by now. Adapt to the wisdom of those who traveled this road
before you, and life will become simpler.

3.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What’s the engineer’s motto regarding things that ain’t broke?
2. Why do many people believe that Unix is hard to learn?
3. Isit better to accumulate vast amounts of knowledge or to become highly skilled using the fundamentals? Why?

4. What is the core principle of Unix design? Explain.

3.2 What is Unix?

3.2.1 Aw, man... | Have to Learn Another System?

Well, yeah, but it’s the last time, I promise. As you’ll see in the sections that follow, once you’ve learned to use Unix, you’ll be
able to use your new skills on virtually any computer. Over time you’ll get better and better at it, and never have to start over
from scratch again.

With rare exceptions, if you plan to do computational research, you have two choices:

The Research Computing User’s Guide 28/574

¢ Learn to use Unix.

* Rely on the charity of others.

Most scientific software runs only on Unix and very little of it will ever have a graphical or other user interface that allows you
to run it without knowing Unix.

The vast majority of high performance computing (HPC) clusters run Unix. You will need basic Unix skills to utilize HPC and
HPC clusters generally do not offer a graphical interface. Some HPC administrators attempt to provide for people intent on
avoiding Unix, but the results are severely limiting at best.

There have been many attempts to provide access to scientific software via web interfaces, but most of them are abandoned after
a short time. People create them with good intentions, but without realizing that they will need to pour effort into maintenance
for many years to come. Writing software is like adopting a puppy: It’s fun and rewarding, but you need to be committed for the
long-term.

In order to be independent in your research computing, you must know how to use Unix in the traditional way. This is the reality
of research computing. It’s much easier to adapt yourself to reality than to adapt reality to yourself. This chapter will help you
become proficient enough to survive and even flourish on your own.

Unix began as the trade name of an operating system developed at AT&T Bell Labs around 1970. It quickly became the model on
which most subsequent operating systems have been based. Eventually, "Unix" came into common use to refer to any operating
system mimicking the original Unix, much like "Band-Aid" is now used to refer to any adhesive bandage purchased in a drug
store.

Over time, formal standards were developed to promote compatibility between the various Unix-like operating systems, and
eventually, Unix ceased to be a trade name. Today, the name Unix officially refers to a set of standards to which most operating
systems conform.

Look around the room and you will see many standards that make our lives easier. (Wall outlets, keyboards, USB ports,
light bulb sockets, etc.) All of these standards make it possible to buy interchangeable devices from competing companies.
This competition forces the companies to offer better value. They need to offer a lower price and/or better quality than their
competition in order to stay in business.

The Unix standards serve the same purpose as all standards; to foster collaboration, give the consumer freedom of choice, reduce
unnecessary learning time, and annoy developers who would rather ignore what everyone else is doing and reinvent the wheel at
their employer’s expense to gratify their own egos. They allow us to become operating system agnostic nomads, readily switching
from one Unix system to another as our needs or situations dictate.

In a nutshell, Unix is every operating system you’re likely to use except Microsoft Windows. Table 3.1 provides links to many
Unix-compatible operating systems. This is not a comprehensive list. Many more Unix-like systems can be found by searching
the web.

Note Apple’s macOS has many proprietary extensions, including Apple’s own user interface, but is almost fully Unix-compatible
and can be used much like any other Unix system by simply choosing not to use the Apple extensions. It is largely based on
FreeBSD and other BSD-based components like the Mach kernel.

Note

When you develop programs for any Unix-compatible operating system, those programs will be portable: they can be eas-
ily used by people running any other Unix-compatible system, and you can bring them with you when you switch from one
Unix-compatible system to another. Most Unix programs can even be run on a Microsoft Windows system with the aid of a
compatibility layer such as Cygwin (Section 3.4.1).

Unix skills are portable as well. Once you've learned to use one Unix system, you're ready to use any of them. Hence, Unix is
the last system you'll ever need to learn!

The time you spend learning or developing programs for non-portable systems make you increasingly dependent on that system
and its vendor. By developing code for Unix and developing Unix skills, you maintain your freedom to switch to another operating
system whenever you choose.

The Research Computing User’s Guide 29/574

Name Type URL

AIX (IBM) Commercial https://en.wikipedia.org/wiki/IBM_AIX

CentOS GNU/Linux Free https://en.wikipedia.org/wiki/CentOS

Debian GNU/Linux Free https://en.wikipedia.org/wiki/Debian

DragonFly BSD Free https://en.wikipedia.org/wiki/DragonFly_BSD

FreeBSD Free https://en.wikipedia.org/wiki/FreeBSD

GhostBSD Free https://en.wikipedia.org/wiki/GhostBSD

HP-UX Commercial https://en.wikipedia.org/wiki/HP-UX

JunOS (Juniper Networks) Commercial https://en.wikipedia.org/wiki/Junos

Linux Mint Free https://en.wikipedia.org/wiki/Linux_Mint

MidnightBSD Free https://en.wikipedia.org/wiki/MirOS_BSD

NetBSD Free https://en.wikipedia.org/wiki/NetBSD

OpenBSD Free https://en.wikipedia.org/wiki/OpenBSD

Openlndiana Free https://en.wikipedia.org/wiki/OpenIndiana
ﬁz;z?rjo):h;md later (Apple Commercial https://en.wikipedia.org/wiki/OS_X

QNX Commercial https://en.wikipedia.org/wiki/QNX

Redhat Enterprise Linux Commercial https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
Slackware Linux Free https://en.wikipedia.org/wiki/Slackware

SmartOS Free https://en.wikipedia.org/wiki/SmartOS

Solaris Commercial https://en.wikipedia.org/wiki/Solaris_(operating_system)
SUSE Enterprise Linux Commercial https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Desktop
gEgEﬁi&iﬁ;ﬁiﬁ ;l(llsl(l;untu) Free https://en.wikipedia.org/wiki/Ubuntu_(operating_system)

Table 3.1: Partial List of Unix Operating Systems

Unix systems run on everything from your cell phone to the world’s largest supercomputers. Unix is the basis for Apple’s i0S,
the Android mobile OS, embedded systems such as networking equipment and robotics controllers, most PC operating systems,
and many large mainframe systems. Many Unix systems are completely free (as in free beer) and can run tens of thousands of
high-quality free software packages. As an extreme example, NetBSD runs on dozens of different CPU architectures, including
some hobbyist systems such as Commodore Amigas, 68k-based Macs, etc.

It’s a good idea to regularly use more than one Unix system. This will make you aware of how much they all have in common
and what the subtle differences are.

3.2.2 Operating System or Religion?

Aside
Keep the company of those who seek the truth, and run from those who have found it.
-- Vaclav Havel

The more confident someone is in their views, the less they probably know about the subject. As we gain life experience and
wisdom, we become less certain about everything and more comfortable with that uncertainty. What looks like confidence is
usually a symptom of ignorance of our own ignorance, generally fueled by ego.

If you discuss operating systems at length with most people, you will discover, as the ancient philosopher Socrates did while
discussing many topics with "experts", that their views are not based on broad knowledge and objective comparison. Before
taking advice from anyone, it’s a good idea to find out how much they really know and what role emotion and ego play in their
preferences. Ask them to clarify their statements and support them with evidence. This process of questioning has become
known as a "Socratic examination", named after the famous Greek philosopher Socrates. Note, however, that if you embarrass
the wrong people, it may get you executed, as it did Socrates himself according to legend.

The whole point of the Unix standard, like any other standard, is freedom of choice. However, you won’t have any trouble finding
evangelists for a particular brand of Unix-compatible operating system on whom this point is lost. "Discussions" about the merits
of various Unix implementations often involve arrogant pontification and emotional outbursts, possibly involving some cussing.

https://en.wikipedia.org/wiki/IBM_AIX
https://en.wikipedia.org/wiki/CentOS
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/DragonFly_BSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/GhostBSD
https://en.wikipedia.org/wiki/HP-UX
https://en.wikipedia.org/wiki/Junos
https://en.wikipedia.org/wiki/Linux_Mint
https://en.wikipedia.org/wiki/MirOS_BSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/OpenIndiana
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/QNX
https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
https://en.wikipedia.org/wiki/Slackware
https://en.wikipedia.org/wiki/SmartOS
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/SUSE_Linux_Enterprise_Desktop
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://wiki.netbsd.org

The Research Computing User’s Guide 30/574

If you step back and ask yourself what kind of person gets emotionally attached to a piece of software, you’ll realize whose
advice you should value and whose you should not. Rational people will keep an open mind and calmly discuss the objective
measures of an OS, such as performance, reliability, security, easy of maintenance, specific capabilities, etc. They will also back
up their opinions with facts rather than try to bully you into validating their views.

non

If someone tells you that a particular operating system "isn’t worth using", "is way behind the times", or "sucks wads", rather
than asking you what you need and objectively discussing alternatives, this is someone whose advice you can safely ignore. They
are not interested in helping you. They need you to validate their opinions, because those opinions are not supported by facts.

Aside

We’re all capable of rational thought, but sometimes we only use it to rationalize what we want to believe, despite obvious
evidence to the contrary.

"I don’t understand why some people wash their bath towels. When | get out of the shower, I'm the cleanest object in my house.
In theory, those towels should be getting cleaner every time they touch me. By the way, are towels supposed to bend?"

-- Wally (Dilbert)

Evangelists are easy to spot. They will instantly assess your needs without asking you a single question and proceed to explain
(often aggressively) why you should be using their favorite operating system or programming language. They invariably have
limited or no experience with other alternatives. This is easy to expose with a few simple questions. "How many years of
experience to you have with it?" The answer is usually close to 0. "What are the specific advantages and disadvantages?" The
response to this will usually be stuttering, silence, or double-talk. Ask them to clarify further and it won’t take long to expose
their ignorance.

Ultimately, the system that most easily runs your programs to your satisfaction is the best one for you. That could turn out to be
BSD, Cygwin, Linux, macOS, OpenlIndiana, or any other. Someone who knows what they’re doing and truly wants to help you
will always begin by asking questions in order to better understand your needs. "What program(s) do you need to run?", "Do
they require any special hardware?", "Do you need to run any commercial software, or just open source?", etc. They will then
consider multiple alternatives and inform you about the capabilities of each one that might match your needs.

There is another reason besides ego that people often choose inappropriate solutions to a problem; the desire to use what they
know instead of being open to learning a better approach.

Aside When all you have is a hammer, everything looks like a nail.

I regularly experiment with various Unix variants to evaluate their ease of use, reliability, and resource requirements. This is easy
to do using virtual machines (See Chapter 40.) My personal preference for running Unix software (for now, these could change
in the distant future) are listed below. All of these systems are somewhat interchangeable with each other and the many other
Unix based systems available, so deviating from these recommendations will generally not lead to catastrophe.

More details on choosing a Unix platform are provided in Chapter 37.

* Servers running mostly open source software: FreeBSD.

FreeBSD is extremely fast, reliable, and secure. It is known as a "set-and-forget" operating system, since it requires very
little attention after initial installation and configuration. Software management is very easy with FreeBSD ports, which offers
over 30,000 software packages (not counting different builds of the same software). The ports system supports installation
via either generic binary packages, or you can just as easily build from source with custom options or optimizations for your
specific CPU. With the Linux compatibility module, FreeBSD can directly run most Linux closed-source programs with no
performance penalty and a little added effort and resources.

The Research Computing User’s Guide 31/574

4

LUMINA

DESKTOP ENVIRONMENT

DO a L] . & M O [textitesh-konsol i@ Inbox- uwm.edu gUWMParaHeH.‘(-mpu(m) Mozilla Firefox Start Pag 06:59:36 ™=

FreeBSD with the Lumina desktop environment

 Servers running mainly or commercial applications or CUDA GPU software: Enterprise Linux (AlmaLinux, CentOS, RHEL,
Rocky Linux, Scientific Linux, SUSE).

These systems are designed for better reliability, security, and long-term binary compatibility than bleeding-edge Linux sys-
tems. They are the only platforms besides MS Windows and macOS supported by many commercial software vendors. While
you may be able to get some commercial engineering software running on Ubuntu or Mint, it is often difficult and the company
will not provide support. Packages in the native Yum repository of enterprise Linux are generally outdated, but more recent
open source software can be installed using a separate add-on package manager such as pkgsrc.

* An average Joe who wants to browse the web, use a word processor, etc.: Debian, GhostBSD, Ubuntu, or similar open source
Unix system with graphical installer and management tools, or Macintosh.

These systems make it easy to install software packages and system updates, with minimal risk of breakage that Joe would not
know how to fix.

The Research Computing User’s Guide 32/574

Activities Wed 16:28

Q, Type to search..

P @0 W& O @@ Menu key

Debian Linux

* Someone who uses mostly Windows-based software, but needs a basic Unix environment for software development or con-
necting to other Unix systems: A Windows PC with Cygwin.

Cygwin is free, entirely open source, and very easy to install in about 10 minutes on most Windows systems. It has some
performance bottlenecks, fewer packages than a real Unix system running on the same machine, and a few other limitations,
but it’s more than adequate for the needs of many typical users. See Section 3.4.1 for details.

3.2.3 The Unix Standard API

Programmer time is expensive. Writing a program twice costs twice as much. Unix standards solve this problem.

Unix systems adhere to an application program interface (API) standard, which means that programs written for one Unix-based
system can be run on any other with little or no modification, even on completely different hardware. For example, programs
written for an Intel/AMD-based Linux system will also run an ARM-based Mac, or FreeBSD on an ARM, Power, or RISC-V
processor.

An API defines a set of functions (subprograms) used to request services from the operating system, such as opening a file,
allocating memory, running another program, etc. These functions are the same on all Unix systems, but some of them are
different on Windows and other non-standard systems. For example, to open a file in a C program on any Unix system, one
would typically use the fopen() function:

FILE *fopen(const char xfilename, const char *mode);

Microsoft compilers support fopen() as well, but also provide another function for the same purpose that only works on Windows:

errno_t fopen_s (FILExx pFile, const char xfilename, const char xmode);

The Research Computing User’s Guide 33/574

Note Microsoft claims that fopen_s() is more secure, which is debatable. Note however, that even if this is true, the existing
fopen() function itself could have been made more secure rather than creating a separate, non-portable function that does the
same thing. Non-standard functions like fopen_s() mainly benefit the vendor by making it harder to port software to a competing
platform.

Here are a few other standard Unix functions that can be used in programs written in C and most other compiled languages.
These functions can be used on any Unix system, regardless of the type of hardware running it. Some of these may also work in
Windows, but for others, Windows uses a completely different function to achieve the same goal.

chdir () // Change current working directory
execl () // Load and run another program

mkdir () // Create a directory

unlink () // Remove a file

sleep () // Pause execution of the process
DisplayWidth() // Get the width of the graphical screen

Because the Unix API is platform-independent, it is also possible to compile and run most Unix programs on Windows with the
aid of a compatibility layer, software that bridges the difference between two platforms. (See Section 3.4.1 for details.) It is not
generally possible to compile and run Windows software on Unix, however, because Windows has many features specific to PC
hardware.

Since programs written for Unix can be run on almost any computer, including Windows computers, they will never have to be
rewritten in order to run somewhere else. Programs written for non-Unix platforms will only run on that platform, and will have
to be rewritten (at least partially) in order to run on any other system. This leads to an enormous waste of man-hours that could
have gone into creating something new. They may also become obsolete as the proprietary systems for which they were written
evolve. For example, most programs written for MS DOS and Windows 3.x are no longer in use today, while programs written
for Unix around that same time will still work on modern Unix systems.

3.2.4 Shake Out the Bugs

Another advantage of programming on standardized platforms is the ability to easily do more thorough testing. Compiling and
running a program on multiple operating systems and with multiple compilers will almost always expose bugs that you were
unaware of while running it on the original development system. The same bug will have different effects on different operating
systems, with different compilers or interpreters, or with different compile options (e.g. with and without optimization).

For example, an errant array subscript or pointer might cause corruption in a non-critical memory location in some environments,
while causing the program to crash in others.

A program may seem to be fine when you compile it with Clang and run it on your Mac, but may not compile, or may crash
when compiled with GCC on a Linux machine.

Finding bugs now may save you from the stressful situation of tracking them down under time pressure later, with an approaching
grant deadline. A bug that was invisible on your Mac for the test cases you’ve used could also show up on your Mac later, when
you run the program with different inputs.

Developing for the Unix API makes it easy to test on various operating systems and with different compilers. There are many free
BSD and GNU/Linux systems, as well as free compilers such as Clang and GCC. Most of them can be run in a virtual machine
(Chapter 40), so you don’t even need another computer for the sake of program testing. Take advantage of this easy opportunity
to stay ahead of program bugs, so they don’t lead to missed deadlines down the road.

3.2.5 The Unix Standard Ul

The Unix standards not only make programs portable, they make our knowledge as users portable as well. All Unix systems
support the same basic set of commands, which conform to standards so that they behave the same way everywhere. So, if you
learn to use FreeBSD, most of that knowledge will directly apply to Linux, macOS, Solaris, etc.

Another part of the original Unix design philosophy was to do everything in the simplest way possible. As you learn Unix, you
will likely find some of its features befuddling at first. However, upon closer examination, you will often come to appreciate the

The Research Computing User’s Guide 34 /574

elegance of the Unix solution to a difficult problem. If you’re observant enough, you’ll learn to apply this Zen-like simplicity to
your own work, and maybe even your everyday life.

You will also gradually recognize a great deal of consistency between various Unix commands and functions. For example,
many Unix commands support a —v (verbose) flag to indicate more verbose output, as well as a —q (quiet) flag to indicate no
unnecessary output. Over time, you will develop an intuitive feel for Unix commands, become adept at correctly guessing how
things work, and feel almost God-like at times.

Unix documentation also follows a few standard formats, which users quickly get used to, making it easier to learn new things
about commands on any Unix system.

In a nutshell, the time and effort you spend learning any Unix system will make it easy to use any other in the future. You need
only learn Unix once, and you’ll be proficient with many different implementations such as FreeBSD, Linux, and macOS.

3.2.6 Fast, Stable and Secure

Since Unix systems compete directly with each other to win and retain users running the same programs, developers are highly
motivated to optimize objective measures of the system such as performance, stability, and security.

Most Unix systems operate near the maximum speed of the hardware on which they run. Unix systems typically respond faster
than other systems on the same hardware and run intensive programs in less time. Many Unix systems require far fewer resources
than non-Unix systems, leaving more disk and memory for use by your programs.

Unix systems tend to be very reliable and may run for months or even years without being rebooted. I managed a particular
FreeBSD HPC cluster for eight years. Except for some problems in the first few months that were traced to a Dell firmware bug,
none of the servers in this cluster ever crashed.

Unlike Windows, software installations almost never require a reboot, and even most security updates can be applied without
rebooting. Reboots are typically only needed following a kernel update.

Stability is critical for research computing, where computational models may run for weeks or months. Users of non-Unix
operating systems often have to choose between killing a process that has been running for weeks and neglecting critical security
updates that require a reboot.

Very few viruses or other malware programs exist for Unix systems. This is in part due to the inherently better security of Unix
systems and in part due to a strong tradition in the Unix community of discouraging users from engaging in risky practices such
as running programs under an administrator account and installing software from pop-ups on the web.

3.2.7 Sharing Resources

Your mom probably told you that it’s nice to share, but did you know it’s also more efficient?

One of the major problems for researchers in computational science is managing their own computers. Most researchers aren’t
very good at installing operating systems, managing software, apply security updates, etc., nor do they want to be. Unfortunately,
they often have to do these things in order to conduct computational research. Computers managed by a tag-team of researchers
usually end up full of junk software, out-of-date, full of security issues, and infected with malware.

Since Unix is designed from the ground up to be accessed remotely, Unix creates an opportunity to serve researchers’ needs far
more cost-effectively than individual computers for each researcher. A single Unix machine on a modern PC can support dozens
or even hundreds of users at the same time, depending how demanding their software is.

3.2.8 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. After learning Unix, on what operating systems will you be able to use your new skills?

2. What is the major design goal of the Unix standards?

The Research Computing User’s Guide 35/574

3. What is the alternative to learning Unix for computational scientists? Why?

4. Why does most scientific software lack a convenient graphical or web interface?

5. Is Unix an operating system? Why or why not?

What is the advantage of open standards?

How many different Unix-compatible operating systems exist? What does this mean for Unix users?

Which mainstream operating systems are Unix-compatible and which are not?

© x =N

What types of computer hardware run Unix?

10. How much does Unix cost?

11. Which Unix operating system is the best one?

12. How should we go about choosing a Unix system? What if we make the wrong choice?

13. How do we spot evangelists who are likely to give us irrational advice?

14. What is an API?

15. What is the advantage of the Unix API over the APIs of non-Unix operating systems? What problem does it solve?
16. Can software written for Unix be run on Windows? How?

17. How does the Unix API help us proactively eliminate software bugs?

18. What is a UI? What are three advantages of the Unix UI over the Uls of non-Unix operating systems?

19. Why are Unix-compatible operating systems faster, more stable, and more secure than many non-Unix platforms?

20. How does the inherent remote access capabilities of Unix help researchers?

3.3 Unix User Interfaces

A user interface, or Ul refers to the software that allows a person to interact with the computer. The UI provides the look and
feel of the system, and determines how easily and efficiently it can be used. (Note that ease of use and efficiency are not the
same!)

The term "MS Windows" refers to a specific proprietary operating system, and implies all of the features of that system including
the API and the UI. When people think of Windows, they think of the Start menu, the Control Panel, etc. Likewise, "Macintosh"
refers to a specific product and invokes images of the "Dock" and a menu bar at the top of the screen rather than attached to a
window.

The term "Unix", on the other hand, implies an API, but does not imply a specific UI. There are many Uls available for Unix
systems. In fact, a computer running Unix can have multiple Uls installed, and each user can choose the one they want when the
log in.

3.3.1 Graphical User Interfaces (GUIs)
A Graphical User Interface, or GUI (pronounced goo-ee), is a user interface with a graphical screen, and icons and menus we
can select using a mouse or a touch screen.

There are many different GUIs available for Unix. Some of the more popular ones include KDE, Gnome, XFCE, LXDE,
OpenBox, CDE, and Java Desktop.

The Research Computing User’s Guide

36 /574

p Applications Places System @@ﬂ Q E e] 1 606Hz u@ é Friaug 5, 901pM [N)

@ Mozilla Firefox Start Page - Mozilla Firefox
File Edit View History Bockmarks Tools Help

@ G [$3] httpymmw.google.comyfirefox: client=firefox-asrls=crg mozilia en-US:official

[FMost Visited v v Getting Started [f]Latest Headlines™ EZUwM & Milwaukee Forecast

Mozilla Firefox Start Page +

Google

[Advanced seareh

| Google Search |

® Uparade Firsfox to the latest version and stay connected to your email with App
Tabs.

About Mozilla - Firefox Support

 desktop,
pcific Unix-b
hd Gentoo

Saved unix.dbk: 178 lines, 6322 characters <insert> 92 41

@) [Eremnd @ mosils Frsfox stant e, |

A FreeBSD system running Gnome desktop.

eu Mozilla Firef

Start Page - Mozilla Frefox Desktop

File Edit Wiew History Bookmarks Tools Help
| @ Mmozillz Firefox Start Page ||
& [© Firef 53 a & &

Jason Bacon (bacon) on freebie.jbacon.dyndi

S
a Search: (| !

g Education

Games » Search
Graphics or aur menthly newsletter and get the latest on your
rowser,
Internet
nternel .
Multimed
ultimedia .
office »
Settings > ﬁ' ﬁ @ Restore Previous Session
d-ons Sync Settings
System ~
- >
v

g i 1O

e

B

bacon : tesh

Favorites Applications = Computer Recently Used Leave

@ e [E @ Mozilla Firefox Start Page - Mozilla Fire [@l] bacon : tesh - Konsole

HEECT e® L Sa)d -

A FreeBSD system running KDE desktop.

The Research Computing User’s Guide 37 /574

bacon

LUMINA

DESKTOP ENVIRONMENT

L~] . E B M O [Text:tcsh-Konsols i@ Inbox- bacan@uwmedt gUN"-’MPavaH putin) Mozila Fircfox Start Pag 06:59:36

A FreeBSD system running Lumina desktop.

i Applications Menu Eﬁ @ Mozilla Firefox Start Pag... @ Terminal

[@

File Edit View History Bookmarks Tools Help

a
‘@)Mazw\la Firefox Start Page ‘Ii‘ 7
@ ® [@ abouthome -3 @

[Most Visited ¥ [EJHeadlines¥ & Milwaukee & Delafield 5ZUWM Calendar {}Acadix MUWM igfFreeBSD

— N
J
¥

Go glc | Search
a
File Edit
Y Thanks for choosing Frefox! To get
On-CallSch 9 the most out of your browser, learn
more about the latest features.

=

@ Restore Previogs Session

volleyball JPG

()
3]
B e

invite2012

About Mozilla

FreeBSD peregrine bacon 407: logout

= Connection to login.pere ne.hpc.uwm.edu closed.

FreeBSD sculpin bacon ~

A FreeBSD system running XFCE desktop.

Example 3.1 Practice Break
If you have access to a Unix GUI, log into your Unix system via the GUI interface now.

The Research Computing User’s Guide 38/574

All Unix GUISs are built on top of the X11 networked graphics API. As a result, all Unix systems have the inherent ability to
display graphics on other Unix systems over a network. L.e., you can remotely log into another Unix computer over a network
and run graphical programs that display output wherever you’re sitting.

This is not the same as a remote desktop system, which mirrors the console display on a remote system. Unix systems allow
multiple users in different locations to run graphical programs independent of each other. In other words, Unix supports multiple
independent graphical displays on remote computers.

It is also not the same as a terminal server, which opens an entire desktop environment on a remote display.

With Unix and X11, we can have individual applications running on multiple remote computers displayed on the same desktop.
Doing so is easy and requires no additional software to be installed.

Most Unix GUIs support multiple virtual desktops, also known as workspaces. Virtual desktops allow a single monitor to
support multiple separate desktop images. It’s like having multiple monitors without the expense and clutter. The user can switch
between virtual desktops by clicking on a panel of thumbnail images, or in some cases by simply moving the mouse over the
edge of the screen.

3.3.2 X11 on macOS

macOS is Unix compatible, derived largely from FreeBSD and the Mach kernel project, with components from GNU and other
Unix-based projects.

It differs from more traditional Unix systems like BSD and Linux, though, in that it runs Apple’s proprietary graphical API and
GUI. Native OS X programs don’t use the X11 API, but OS X can also run X11-based programs with the XQuartz add-on. See
Section 3.19 for instructions on enabling X11 for Mac.

3.3.3 Command Line Interfaces (CLIs): Unix Shells

There are two basic types of user interfaces:

* Menu-driven, where choices are displayed on the screen and the user selects one.

¢ Command-driven, where the user types commands that they have memorized.

A GUI is a type of menu-driven interface, where the menu items may be text or graphical icons. Some menu systems are simply
text selected by entering a number on the keyboard.

/o /7 /7

IRV R A AV

VA S S A S S A S A S S A S A A A A A A SV A AV A
/) NN, NN S NN,

- / /S) B

Portable Command-line Systems Management
https://acadix.biz/auto-admin.php

This menu system encompasses only a small fraction of the total auto-admin
functionality. To see what else is available via the command-line, choose
"List available auto-admin scripts" below.

Full documentation is in the works and will be included in a future release.

. Update system

. User management
Software management
. Network management
. Power management

g w N

The Research Computing User’s Guide 39/574

File system actions and settings
Security settings

System settings

Services manager

0.. List available auto-admin scripts
Quit

O O o J o

Selection?

While all modern Unix systems have GUIs, much Unix work is still done via the command line interface (CLI). A CLI requires
the user to type in commands, rather than select them from a menu, much like short-answer questions vs multiple choice.

Menu-driven systems are easier to use if the system has limited functionality and you’re new to the system or use it infrequently.
However, menus are cumbersome where there is too much functionality to offer in a simple menu. Even simple menu systems
can become cumbersome for everyday use.

If a user needs access to dozens or hundreds of features, they cannot all be displayed on the screen at the same time. Hence, it will
be necessary to navigate through multiple levels of menus or screens to find the functionality you need. Doing this repeatedly
becomes annoying rather quickly. A command line interface, on the other hand, provides instant access to an unlimited number
of commands.

An ATM (automatic teller machine) is a good candidate for a menu interface. It has only a few functions and people don’t use it
every day. An ATM with a command-driven interface would likely be unpopular among banking customers.

You might be surprised to learn that CAD (Computer Aided Design) systems have CLIs. While CAD is inherently graphical in
nature, CAD users cannot efficiently access their vast functionality through menus. Most CAD users quickly learn to use the CLI
to draw, move, and edit objects via keyboard commands.

Because menu systems slow us down, most support kot keys, special key combinations that can be used to access certain features
without navigating the menus. Hot keys are often shown in menus alongside the features they activate. For example, Command+q
can be used on macOS and Ctrl+q on Windows and most Unix GUIs to terminate many graphical applications, as shown in
Figure 3.1.

DuckDuckGo — Priv. mplified. — Mozilla Firefox

Fle Edit View History Bookmarks Tools Help

New Tab Ctrl+T

New Window Ctrl+N

New Private Window Ctrl+Shift+P 133% 17 Q search R @ & =
Qpen File... cur+o M o= Canvas @ FreeBSD | eBay By Translate ™ HERE WeGo g Acadix () SFC ¥ [J Other Bookmarks
Save Page As... Cctrl+s

Email Link...

Print... Ctrl+P

Import From Another Browser...

(] work Offline

Restart (Developer) Ctrl+Alt+R

DuckDuckGo

Tired of being tracked online? We can help.

Get seamless privacy protection on your browser for free with one download:

£ Private Search & Tracker Blocking @ Site Encrvntion

Figure 3.1: Hot Keys

The Research Computing User’s Guide 40/574

It is also difficult to automate tasks in a menu-driven system. Some systems have this capability, but most do not, and the method
of automating is different for each system. Command-driven interfaces are easy to automate by placing commands in a script, a
simple text file containing a sequence of commands that might otherwise be run directly via the keyboard. Scripting is covered
in Chapter 4.

Perhaps the most important drawback of menu-driven systems is non-existence. Programming a menu system, and especially
a GUI, requires a lot of grunt-work and testing. As a result, the vast majority of open source software does not and never will
have a GUI interface. Open source developers generally don’t have the time or programming skills to build and maintain a
comprehensive GUI interface.

Caution
@ If you lack command-line skills, you will be limited to using a small fraction of available open source software.
In the tight competition for research grants, those who can use the command-line more often win.

The small investment in learning a command line interface can have a huge payoff, and yet many people try to avoid it. The
result is usually an enormous amount of wasted effort dealing with limited and poorly designed custom user interfaces before
eventually realizing that things would have been much easier had they learned to use the command line in the first place. It’s
amazing how much effort people put into avoiding effort...

A shell is a program that provides the command line interface. It inputs commands from the user, interprets them, and executes
them. (By "execute", we mean "run", not what happened to Socrates.) Using a shell, you type a command, press enter, and the
command is immediately executed.

The word "shell" comes from the view of Unix as three layers of software wrapped around the hardware:

Ul (Shell)

Libraries

Kernel

Hardware

A 3-layer Model of Unix

* The innermost layer, which handles all hardware interaction for Unix programs, is called the kernel, named after the core of
a seed. The Unix kernel effectively hides the hardware from user programs and provides a standard API. This is what allows
Unix programs to run on different kinds of hardware without modification. Application programs never "see" the hardware
interface. They only see the kernel interface, which is the same regardless of hardware.

* The middle layer, the libraries, provide a wealth of standard functionality for Unix programmers to utilize. The libraries are like
a huge box of Legos that can be used to build all kinds of sophisticated programs. They include basic input/output functions,
math functions, character string functions, graphics functions, etc.

* The outermost layer, the CLI, is called a shell.

3.3.4 Terminals

All that is needed to use a Unix shell is a keyboard and a screen. In the olden days, these were provided by a simple hardware
device called a ferminal, which connected a keyboard and screen to the system through a simple communication cable. These

The Research Computing User’s Guide 41/574

terminals typically did not have a mouse or any graphics capabilities. They usually had a text-only screen of 80 columns by 24
lines, and offered limited capabilities such as moving the cursor, scrolling the screen, and perhaps a limited number of colors,
usually 8 or 16.

o m

]
3
&
!

THD e .
= T

“8 LT | &
Wy Wiy i

- =

Digital WT320 terrninal

Hardware terminals lost popularity with the advent of cheap personal computers, which can perform the functions of a terminal,
as well as running programs of their own. Hardware terminals are still used in some settings that require extreme security, such
as banking, where a PC’s capabilities would aid in stealing information by saving it to an external device or transmitting it across
a network. A dumb terminal ensures that information can be sent to the user on the screen and nowhere else.

Hardware terminals have been largely replaced by terminal emulators. A terminal emulator is a simple program that emulates an
old style terminal within a window on your desktop.

CoreTerminal

FreeBSD coral.acadix bacon ~ 1011: |}

A Terminal emulator.
All Unix systems come with a terminal emulator program. There are also free terminal emulators for Windows, which are

The Research Computing User’s Guide 42 /574

discussed in Section 3.5.

For purists who really want to emulate a terminal, there’s Cool Retro Terminal (CRT for short, which also happens to stand
for cathode ray tube). This emulator comes complete with screen distortion and jitter to provide a genuine nostalgic 1970s
experience.

o E N

File Edit View Profiles Help

File Actions Edit View Help
Shell No. 1 X,

Return code

Cool Retro Terminal

3.3.5 Basic Shell Use

Once you’re logged in and have a shell running in your terminal window, you’re ready to start entering Unix commands.

The shell displays a shell prompt, such as "FreeBSD coral.acadix bacon ~ 1011:" in the image above, to indicate that it’s waiting
for you to enter the next command. The shell prompt can be customized by each user, so it may be different on each Unix system
you use.

Note
For clarity, we primarily use the following to indicate a shell prompt in this text:

shell-prompt:

To enter a Unix command, you type the command on a single line, edit if necessary (using arrow keys to move around), and press
Enter or Return.

We can also enter multiple Unix commands on the same line separated by semicolons.

Modern Unix shells allow commands to be extensively edited. Assuming your terminal type is properly identified by the Unix
system, you can use the left and right arrow keys to move around, backspace and delete to remove characters (Ctrl+h serves as a
backspace in some cases), and other key combinations to remove words, the rest of the line, etc. Learning the editing capabilities
of your shell will make you a much faster Unix user, so it’s a great investment of a small amount of time.

If you have access to a Unix system now, do the practice break below. This practice break is offered again in Section 3.5 for
those who will be using a remote Unix system.

The Research Computing User’s Guide

43/574

Example 3.2 Practice Break

Note For this, and all practice breaks that follow, students should do the exercises shown. If you are reading this for a class,
then these exercises are meant to be done in class. Try them on your own, do your best to understand what is happening, and

ask the instructor for clarification if necessary.

Remotely log into another Unix system using the ssh command or PuTTY, or open a shell on your Mac or other Unix system.

Then try the commands shown below.

Unix commands are below preceded by the shell prompt "shell-prompt: ". Other text refers to input to the program (command)

currently running. You must exit that program before running another Unix command.
Lines beginning with ’#° are comments to help you understand the text below, and not to be typed.

Don’t worry if you’re not clear on what these commands do. You do not need to memorize them right now. This exercise is only

meant to help you understand the Unix CLI. Specific commands will be covered later.

Print the current working directory
shell-prompt: pwd

List files in the current working directory (folder)
shell-prompt: 1s
shell-prompt: 1s -al

Two commands on the same line. A ’;’ is the same as a newline in Unix.
shell-prompt: 1ls; ls /etc

List files in the root directory
shell-prompt: 1s /

List commands in the /bin directory
shell-prompt: 1ls /bin

Search the directory tree under /etc
shell-prompt: find /etc —-name ’*.conf’

Create a subdirectory
shell-prompt: mkdir -p Data/IRC

Change the current working directory to the new subdirectory
shell-prompt: cd Data/IRC

Print the current working directory
shell-prompt: pwd

See if the nano editor is installed
nano 1s a simple text editor (like Notepad on Windows)
shell-prompt: which nano

If this does not report "command not found", then do the following:
Try the nano editor. ©Nano is an add-on tool, not a standard tool on
Unix systems. Some systems will not have it installed.
shell-prompt: nano sample.txt

Type the following text into the nano editor:

This is a text file called sample.txt.
I created it using the nano text editor on Unix.

Then save the file (press Ctrl+o), and exit nano (press Ctrl+x).
You should now be back at the Unix shell prompt.

The Research Computing User’s Guide

44/ 574

Try the "vi" editor

vi is standard editor on all Unix system. It is more complex than
It is good to know vi, since all Unix systems have it.
shell-prompt: vi sample.txt

Type ’i’ to go into insert mode

Type in some text

Type Esc to exit insert mode and go back to command mode
Type :w to save

Type :gq to quit

"ZZ" is a shortcut for ":w:g"
shell-prompt: 1s

Echo (concatenate) the contents of the new file to the terminal
shell-prompt: cat sample.txt

Count lines, words, and characters in the file
shell-prompt: wc sample.txt

Change the current working directory to your home directory
shell-prompt: cd
shell-prompt: pwd

Show your login name
shell-prompt: id -un

Show the name of the Unix system running your shell process
shell-prompt: hostname

Show operating system and hardware info
shell-prompt: uname -a

Today’s date
shell-prompt: date

Display a simple calendar
shell-prompt: cal
shell-prompt: cal 2023
shell-prompt: cal nov 2018
shell-prompt: cal jan 3000

CLI calculator with unlimited precision and many functions
shell-prompt: bc -1

scale=50

sqrt (2)

872

A

= N = oo

2
a=
b=
@
(-b+sqgrt (b*2-4xaxc)) /2*a

2%a

quit

Show who is logged in and what they are running
shell-prompt: w

shell-prompt: finger

How much disk space is used by the programs in /usr/local/bin?

nano.

The Research Computing User’s Guide 45/574

shell-prompt: du -sh /usr/local/bin/

Copy a file to the current working directory
shell-prompt: cp /etc/profile
shell-prompt: 1ls

View the copy
shell-prompt: cat profile

View the original
shell-prompt: cat /etc/profile

Remove the file
shell-prompt: rm profile
shell-prompt: 1s

Exit the shell (which logs you out from an ssh session)

This can also be done by typing Ctrl+d, which is the ASCII/ISO
character for EOT (end of transmission)

shell-prompt: exit

3.3.6 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Whatis a UI?
2. Whatis a GUI?
3. What is the difference between Unix and other operating systems with respect to the GUI?
4. How is Unix + X11 different from remote desktop systems and terminal servers?
5. What is a virtual desktop?
6. What are the two basic types of user interfaces? Which type is a GUI?
7. What is a CLI?
8. What types of applications are better suited for a menu-driven interface? Why?
9. What types of applications are better suited for a command-driven interface?

10. Which is easier to automate, a menu-driven system or a CLI? Why?

11. How many scientific programs offer a menu-driven interface? Why?

12. What is a shell?

13. What is a kernel?

14. What are libraries? What kinds of functionality do they provide?

15. What is a terminal?

16. What is a terminal emulator?

17. Do people still use hardware terminals today? Explain.

18. What is a shell prompt?

The Research Computing User’s Guide 46 /574

3.4 Still Need Windows? Don’t Panic!

For those who need to run software that is only available for Windows, or those who simply haven’t tried anything else yet, there
are options for getting to know Unix while still using Windows for your daily work.

One option is to remotely log into a Unix system using a terminal application such as PuTTY on your Windows machine.

There are virtual machines (see Chapter 40) that allow us to run Windows and Unix on the same computer, at the same time.
This is the best option for those who need a fully functional Unix environment on a Windows machine.

Cygwin is a compatibility layer that allows Unix software to be compiled and run on Windows. A compatibility layer is generally
easier to install, but as of this writing, Cygwin has performance limitations in some areas. Purely computational software will
run about as fast as it would on a real Unix system, but software that performs a lot of file input/output or other system calls can
be much slower than a real Unix system, even one running in a virtual machine.

For example, installing the pkgsrc package manager from scratch, which involves running many Unix scripts and programs,
required the times shown in Table 3.2. Cygwin, and the Hyper-V virtual machine were all run on the same Windows 10 host
with a 2.6 GHz Core i7 processor and 4 GiB RAM. The native FreeBSD and Linux builds were run on identical 3.0 GHz Xeon
servers with 16 GiB RAM, much older than the Core i7 Windows machine.

Platform Time

Cygwin 71 minutes

FreeBSD Virtual Machine under Hyper-V 21 minutes

CentOS Linux (3.0 GHz Xeon) 6 minutes, 16 seconds
FreeBSD (3.0 GHz Xeon) 5 minutes, 57 seconds

Table 3.2: Pkgsrc Build Times

I highly recommend Cygwin as a light-duty Unix environment under Windows, for connecting to other Unix systems or devel-
oping small Unix programs. For serious Unix development or heavy computation, obtaining a real Unix system, even under a
virtual machine, will produce better results.

3.4.1 Cygwin: Try This First

Cygwin is a free collection of Unix software, including many system tools from Linux and other Unix-compatible systems,
ported to Windows. It can be installed on any typical Windows machine in about 10 minutes and allows users to experience a
Unix user interface as well as run many popular Unix programs right on the Windows desktop.

Cygwin is a compatibility layer, another layer of software on top of Windows that translates the Unix API to the Windows
APIL. As such, performance is not as good as a native Unix system on the same hardware, but it’s more than adequate for many
purposes. Cygwin may not be ideal for heavy-duty data analysis where optimal performance is required, but it is an excellent
system for basic development and testing of Unix code and for interfacing with other Unix systems.

Cygwin won’t break your Windows configuration, since it is completely self-contained in its own directory. Given that it’s so
easy to install and free of risk, there’s no point wasting time wondering whether you should use Cygwin, a virtual machine, or
some other method to get a Unix environment on your Windows PC. Try Cygwin first and if it fails to meet your needs, try
something else.

Installing Cygwin is quick and easy:

1. Download setup-x86_64.exe from https://www.cygwin.com and save a copy on your desktop or some other convenient
location. You will need this program to install additional packages in the future.

https://www.cygwin.com/

The Research Computing User’s Guide

47 /574

View Devices

Machine

Help

WinZ JRunning] -

Oracle VM VirtualEox.

Cygwin
Install Cygwin
Update Cygwin
Search Packages
Licensing Terms

Cygwin/X

Community
Reporting Problems
Mailing Lists
Newsgroups
Gold Stars
Mirror Sites
Donations

Documentation
FAQ

Get that Linux,

Installix

Installing an

Run setup-x86.¢

Open

Open in new tab

Open in new window
Save target as...

Print target D}
Cut

Copy
Copy shortcut

Paste

All Accelerators
Inspect element
Add to favorites...

Properties

lation x | |

-

g Cygwin Packages

2-bit versions of Windows

or install a Cvgwin package for 32-bit windows. The

signature for setup-x86 exe can be used to venify the validity of this binary using this public key.

User's Guide
API Reference
Acronyms

Contributing
Snapshots
Source in CVS
Cygwin Packages

Related Sites
Red Hat Cygwin Product

General installation notes

Installing and Updating Cygwin for 64-bit versions of Windows

Run setup-x86 64 exe any time you want to update or install a Cygwin package for 64-bit windows. Th
signature for setup-x86 64.exe can be used to verify the validity of this binary using this public key.

When installing packages for the first time. setup* . exe does not install every package. Only the milv
base packages from the Cygwin distribution are installed by default. Clicking on categories and packag

>

@].a o

7:01 PM
11/11/2014

B © &g @ | & [©Right Ctrl

o |3

1)

Win7 JRunning]:

Oracle VM VirtualEox.

Snap‘shul;;
Source in CVS
Cygwin Packages

Related Sites
Red Hat Cygwin Product

General installation notes

When installing packages for the first time. setup* . exe does not instal] every package. Only the min
base packages from the Cygwin distribution are installed by default. Clicking on categories and packag

Machine View Devices Help
Save As =ErE=E]
@7@-\- Desktop » = [#3| [Search Deskiop o] x| | o e i
Organize = New folder =~ @ rs
457 Favorites ® 1 | ibraries
‘ B Desktop System Folder
& Downloads [;
‘2l Recent Places Admin
System Folder
4 5 Libraries
| Computer
" @ Dacuments System Folder
b g M 3
o Music gwin Packages
I» =] Pictures NEtwork
- B8 Videos System Folder
sions of Windows
I AVG 2013
> % Computer i Shartrut 2
- S i Cvgwin package for 32-bit windows. The
iename: | <ctup " |ity of this binary using this public key.
Save as type: IAplecatlcm V]
rsions of Windows
& Hide Folders I Save I I Cancel l
all a Cygwin package for 64-bit windows. Th

signature for setug %86 64.exe can be used to \enfy the validity of this binary using this public key.

v

>

@].a o

7:04 PM
11/11/2014

B © &g @ | & [©Right Ctrl

o |3

1)

2. Run setup-x86_64.exe and follow the instructions on the screen.

Unless you know what you’re doing, accept the default answers to most questions. Some exceptions are noted below.

The Research Computing User’s Guide

48 /574

Win7 JRunning]- Oracle VM VirtualEox.

Machine WView Devices Help

E Cygwin Setup IEI@

Cygwin Net Release Setup Program

This setup program is used for the initial installztion of the
Cygwin environment as well as all subsequent updates. Make
sure to remember where you saved it.

The pages that follow will guide you through the installation.
Please note that Cygwin consists of a lange number of
packages spanning a wide variety of purposes. We only
install 3 base set of packages by default. You can always un
this program at any time in the future to add, remove, or
upgrade packages as necessary.

Setup.exe version 2.852 (32 bit)
Copyright 2000-2013
hittp:/Awww . cygwin.com/

- 705PM ||
L=
=

B © &g @ | & [©Right Ctrl

3. Unless you know what you’re doing, simply choose "Install from Internet".

Win7Z JRunning] - Oracle VM VirtualBox.

Machine View Devices Help

E Cygwin Setup - Choose Installation Type

Choose A Download Source
Choose whetherto install or download from the intemet. or install from files in
a local directory.

(@ Install from Intemet
b (downloaded files will be kept for future re-use)

(7) Download Without Instaling

() Install from Local Directory

= [l)

B¢ & &l @ | & [©Right Ctrl

4. Select where you want to install the Cygwin files and whether to install for all users of this Windows machine.

The Research Computing User’s Guide

49 /574

Win7 JRunning]- Oracle VM VirtualEox.
Machine WView Devices Help

E Cygwin Setup - Choose Installation Directory

Select Root Install Directory
Select the directory where you want to install Cygwin. Also choose afew
installation parameters.

Root Directory

Install For
@ All Users (RECOMMENDED)
Cygwin will be available to all users of the system

() Just Me
Cygwin will stil be available to all users, but Desktop lcons, Cygwin Menu Entries, and important
Installer information are onfy available to the cument user. Only select this f you lack
Administrator privileges or f you have specfiic needs.

<Back || Next>L\\;[Cancsl

= el L)

7o6eM | |
112004 |

B © @ &3 @ | @ ElRight Ctrl

5. Select where to save downloaded packages. Again, the default location should work for most users.

Win7Z JRunning] - Oracle VM VirtualBox.

Machine View Devices Help

E Cygwin Setup - Select Local Package Directory

Select Local Package Directory
Select a directory where you want Setup to store the installation files it
downloads. The directory will be created ff it does not already exist

Local Package Directory

-\Users'Admin‘\Desktop

<Back || Next>Dl[Cancel

= [l)

To7eM ||
10 |

B © &Pl @ | @ [©Right Ctrl

6. Select a network connection type.

The Research Computing User’s Guide

50/574

Machine WView Devices Help

Win7 JRunning]- Oracle VM VirtualEox.

E Cygwin Setup - Select Connection Type

Select Your Internet Connection

Setup needs to know how you want it to connect to the intemet. Choose
the appropriate settings below

(@ Direct Connection

Use Intemet Explorer Proxy Settings

(©) Use HTTP/FTP Proxy

Proxy Host

Port (80

<Back || Next>!ﬂ[Cancsl

- T0ieM ||
L=
=

B © &g @ | & [©Right Ctrl

7. Select a download site. It is very important here to select a site near you. Choosing a site far away can cause downloads

to be incredibly slow. You may have to search the web to determine the location of each URL. This information is
unfortunately not presented by the setup utility.

Machine WView Devices Help

]

Recycle Bin

Win7 JRunning] - Oracle VM VirtualBox.

E Cygwin Setup - Choose Download Site(s)

Choose A Download Site
Choose a site from this list, or add your own sites to the list

setup-:86

User URL:

Available Download Stes:

ftp//mimors syringanetworks net
hitp://mimors syringanetworks net
'sourceware mimors tds net
hitp://cygwin.cathedralnetworks.ong
hitp://cygwin.cybemimror.org
ftp://mimors kemel.org
hitp://mimors lkemel.org
ftp.//ftp mimorservice.org
hitp =/ Awww mirorservice.org
fip.//cygwin.osuosl.org
http://cygwin.osuosl.org
http://mirror team-cymn.org
ftp://gd tuwien ac at
L R

o edbaiiee oo

<Back || Next>{}J[Cancsl |

708 PM
PO S k

R u
) &P & {0 | @ [Right Ctrl

8. When you reach the package selection screen, select at least the following packages in addition to the basic installation:

The Research Computing User’s Guide

51/574

* net/openssh
* net/rsync
* x11/xhost

e x11/xinit

This will install the ssh command as well as an X11 server, which will allow you to run graphical Unix programs on your
Windows desktop. You may not need graphical capabilities immediately, but they will likely come in handy down the road.

The rsync package is especially useful if you’ll be transferring large amounts of data back and forth between your Windows

machine and remote servers.

Click on the package categories displayed in order to expand them and see the packages under them.

Win7 JRunning] - Oracle VM VirtualBox

Machine View Devices Help
€ cygwin Setup - Select Packsges [l
Select Packages
Select packages to install E
Search | Clkeso @Cur O EBp Category
Category New B.. 5. Size Package o
4 Skip nfa nia 24k nrss: Ancurses-based RSS reader
&¥ Skip na nja 22 nttcp: New test TCP program
&¥ Skip nf i 146k openidap: Lightweight Directory Access Protocol suite (clients)
&¥ Skip nfa nja 685k openldap-devel: Lightweight Directory Access Protocol suite (development)
&¥ Skip na nja 2058k openldap-server: Lightweight Directory Access Protocol suite (server)
&E7p1-1 a 751k openssh: The OpenSSH server and client programs
4 Skip nfa e 546k openssl: A general purpose cryptography toolkit with TLS implementation
&¥ Skip na nja 3812 openssl-devel: A general purpose cryptography toolkit with TLS implementation (development)
4 Skip nfa nia 8k ping: A basic network tool to test |P network conectivity
4 Skip nfa s 87 pr3287. 3287 Printer Emulztor
&¥ Skip na nja 515k proftpd: Aflexible, stable and highly-corfigurable FTP Server
4 Skip nfa nia 207k pureftpd: Secure production-guality standard-conformant FTP server
&¥ Skip na nja 3% rpcgen: An RPC protocol code generator
&¥ Skip nf i 3% rsh: Clients for remote access commands {rsh, dogin, rep, rexec) =
4% Skip nfa nja 3k rsh-server: Servers for remote access commands [sh, dogin, rop, rexec) =
3051 a 271k rsync: Fast remote file transfer program (can use existing data to minimize transfer)
{?@(ip nf i 43% rtomrent: Ncurses based bittorrent client
& Skip na nja 280k 53270: 3270 Emulator (Scripted)
&¥ Skip na nja 13k sendxmpp: Commandiine XMPP {jabber) utility
4 Skip nfa nia 7k sic: Simple inc client
£¥ Skip na nja 114k stecopy: Manage 2 WWW site via FTP, SFTP, DAY or HTTP
&¥ Skip na nja 162k socat: Bidirectional data transfer relay
£ Clrin i nin AT ohinnal | inivares] I T1 € wwrannar
4| [3
Hide obsolete packages

ﬁ@ =0

713eM | |

= [l)
11/11/2014 |

B © &Pl @ | @ B Right ctrl

The Research Computing User’s Guide

52 /574

Win7Z JRunning] . Oracle VM VirtualBox
Machine View Devices Help
IE Cygwin Setup - Select Packages E‘li‘\é‘
Select Packages =
Select packages to install E
Search D Keep @Cur O B Category
Category New B.. 5. Size Package C
&¥ Skip na nja 14k «f86~video-dummy: Offscreen framebuffer video driver for Xorg X11 server
&¥ Skip nfa nja 123k A B6videonested: Nested video driver for Xorg X11 server
&¥ Skip na nja Sk xfB6bigfortprota: X Org XFreeB6-BigFont extension headers
& Skip nf i 2% «fd: Displays all characters in an X font
4 Skip nfa e 3,690k xfig: An interactive drawing tool
&¥ Skip na nja 1,320k figlb: An interactive drawing tool {grahpic symbols library)
& Skip nfa njn 30k fontsel. Xfont selector
4 Skip nfa s 53k xfs: X.0Org Font Server
&¥ Skip na nja 12k «fsinfo: X.Ong fort server information utility
4 Skip nfa nia 3% xgc: X graphics demo
&¥ Skip na nja 60k xgraph: Plotting program, reads stdin, allows interactive zooming
1061 a 20k xhost: X server access control utility
&¥ Skip nfa nja 7k xineramaproto: ¥.Org Xinerama extension headers
13241 a 41k xnit: X Org X server initializer
& Skip nf i 42 xinput: Xinput device tester
4 Skip nfa e 95k xkbeomp: X.Org XKB keymap compiler
&¥ Skip na nja 23k webevd: X.Org XKB event daemon
& Skip nfa njn 50k xkbprint: ¥.0rg XKB keyboard description printer =
& Skip T 26k akbutls: X keyboard utiitiss El
&¥ Skip na nja BBEk xkeyboard-config: X11 keyboard configuration database
4 Skip nfa nia 14k xkill: X client connection closer
&¥ Skip na nja 11% xlaunch: GUI tool for configuring and starting the X\in X server
£ Clrin rén__nin 17 wlnmd: ¥ evstamm lnad disnlan
4 | . 3
Hide obsolete packages
[<Bak | Nm>L\@J [concal |

7aem | |

S i)
! 11/11/2014 |

B @ & 68 v @ | @ [Right Ctrl

Cygwin can also enable you to do Unix program development on your Windows machine. There are many packages
providing Unix development tools such as compilers and editors, as well as libraries. The following is a small sample of

common development packages:

Note

Many of these programs are easier to install and update than their counterparts with a standard Windows interface.
By running them under Cygwin, you are also practicing use of the Unix interface, which will make things easy for you
when need to run them on a cluster or other Unix host that is more powerful than your PC.

¢ devel/clang (C/C++/ObjC compiler)

¢ devel/clang-analyzer (Development and debugging tool)

* devel/gcc-core (GNU Compiler Collection C compiler)

* devel/gcc-g++

* devel/gcc-gfortran

* devel/make (GNU make utility)
* editors/emacs (Text editor)

* editors/gvim (Text editor)

¢ editors/nano (Text editor)

* libs/openmpi (Distributed parallel programming tools)

math/libopenblas (Basic Linear Algebra System libraries)

math/lapack (Linear Algebra PACKage libraries)

math/octave (Open source linear algebra system compatible with Matlab(r))

math/R (Open source statistical language)

The Research Computing User’s Guide

53 /574

Win7 JRunning;
p

Machine View Devices Hel

z.Oracle VM VirtualBEox.

/€ Cygwin Setup - Select Packages

Select

Packages
Select packages to install

[ESS R

(D Keep @ Cur O Bg

< |

Hide obsolete packages

Search |
Category Currert New B.. S.. Size

4¥ Skip njia nja

& Skip nia nfa 155k
& Skip na nfa 25%
&% Skip nja e 402
& Skip 11,846k
4832 12,598k
4832 5,022
4832 6,880k
& Skip 17,324
&¥ Skip 3875k
& Skip 4.06%
&% Skip 425
& Skip 420k
& Skip T3k
&% Skip 58%
& Skip Bl
782 2,352
£ Skip % 22
& Skip 1.454¢
& Skip 4,362
& Skip 15k
£ Skip ok
&% Skip 3k

HU5k flex: Afast lexical analyzer generator

Package C

flexdll: Creates DLLs with rurtime symbol resolution

fortsproto: X .Cng XFont headers

fossil: DVCS with buitt4n wiki, hitp server and issue tracker

gec-ada: GNU Compiler Collection {Ada)

gec-core: GMU Compiler Collection {C, OpenMF)

gecortran: GNU Compiler Callection (Fortran)

gec-g++: GNU Compiler Collection {C++)

gecjava: GNU Compiler Collection (Java)

gec-obje: GNU Compiler Collection (Objective-C)

goc-objc=+ GNU Compiler Collection (Objective-C++)

gec4ools-epoch 1-autoconf: (gec-special) automatic configure script builder
gectools-epoch 1-automake: {gee-special) a tool for generating GNU-compliant Makefiles

gec4ools-epoch2-autocont: (goc-special) automatic configure script builder

gecdools-epoch 2-automake: {goc-special) a tool for generating GNU-compliant Makefiles
geemakedep: X Makefile dependency tool for GCC

gdb: The GNU Debugger

gendef: Generates exports defintions by analyzing DLLs

gettext-devel: GHU Intemationalization development utilties

git: Distributed version control system

git-completion: Bash completion for Git version control system

git-cvs: CVS compatibilty support for Git version control system

git-email: Email tools for Git version contral system -

[<Back | Mex> | [Cancel

cER> =3

; 8:36 PM
[3
S

B © @@ d| @ ©rightctrl

9. Most users will want to accept the default action of adding an icon to their desktop and to the Windows Start menu.

Machine View Devices He

Win7 JRunnin

cOracle VM VirtualBox.

E Cygwin Setup - Installation Status and Create Icons

Create lcons

Tell setup f you want it to create a few icons for convenient access to the

Cygwin environment.

Create icon on Deskiop
[¥] Add icon to Start Menu

Installation Status
Installation Complete

gziem ||

AR
B0 o
B © & &P [vm {0l | @ &) Right Ctrl

When the installation is complete, you will find Cygwin and Cygwin/X folders in your Windows program menu.

For a basic Terminal emulator, just run the Cygwin terminal:

The Research Computing User’s Guide

54 /574

WinZ [Running] Oracle VM VirtualBox

Machine WView Devices Help

]

Recycle Bin

W
kd

AVG 2013

Cygwin
Terminal

Win7Z [Running] - Oracle VM VirtualBox

Machine View Devices Help

]

Recycle Bin

W
@

AVG 2013

avg_free_stb...

A

setup-x86

&
Cygwin
Terminal

Restore
Move
Size
Minimize

Maximize

Copy Title

Options...
Mew [%\IHFZ

Close Alt+F4

E

8:24 PM

1171172004 |

%) @ &P [l wa {3 | B [B]Right Ctrl

The Research Computing User’s Guide

55/574

WinZ [Running] Oracle VM VirtualBox

Machine View

]

Recycle Bin

avg_free_sth...

Help

- Mouse
- Window
i Terminal

Font
Lucida Consale, 9-point b

[Show beld as fort Fort smocthing
Show bold as colour @ Default () None
] Allow blinking () Partial) Ful

Locale Character set

J [Goneel | [2omiy

]

)]

@) @ & - v @ | @ & Right Ctrl

Within the Cygwin terminal window, you are now running a "bash" Unix shell and can run most common Unix commands such

as "Is", "pwd", etc.

If you selected the openssh package during the Cygwin installation, you can now remotely log into other Unix machines, such as

the clusters, over the network:

The Research Computing User’s Guide

56 /574

WinZ JRunning

cOracle VM VirtualBox.

Machine WView Devices Help

]

Recycle Bin

avg_free_sth...

http%3a%2f..

Cygwin
Terminal

L g BTPM lal
11/11/2014 |
& & @ T | @ (2] Right Ctrl

Note If you forgot to select the openssh package, just run the Cygwin setup program again. The packages you select when
running it again will be added to your current installation.

If you want to run Unix graphical applications, either on your Windows machine or on a remote Unix system, run the Cygwin/X

application:

The Research Computing User’s Guide 57 /574

Win7 [Running] . Oracle VM VirtualBox

Machine WView Devices Help

]

Recycle Bin

wr
_Fl1
@ Default Programs
[Desktop Gadget Gallery
& Internet Explorer
‘;. Windows Anytime Upgrade
Q;l Windows DVD Maker
) Windows Fax and Scan
 Windows Media Center
@ Windows Media Player
i: Windows Update
o, XPS Viewer Music
|| Accessories
I AVG Games
. Cygwin
|, Cygwin-X Computer
x KWin Server

Admin

Documents

Pictures

. Garnes Control Panel

. Microsoft SQL Server 2008 Devices and Printers
. Microsoft SQL Server 2008 R2

|
. Maintenance
| Oracle VM VirtualBox Guest Additions + [IRCEERIALENTELE

4 Back Help and Support

(TS
2l b “rno

B @& | @ [Right ctrl

|Search programs an:

Note Doing graphics over a network may require a fast connection. If you are logging in from home or over a wireless connec-
tion, you may experience very sluggish rendering of windows from the remote host.

Depending on your Cygwin setup, this might automatically open a terminal emulator called "xterm", which is essentially the
same as the standard Cygwin terminal, although it has a different appearance. You can use it to run all the same commands you
would in the standard Cygwin terminal, including ssh. You may need to use the -X or -Y flag with ssh to enable some remote

graphical programs.
Unlike Cygwin Terminal, the xterm supplied with Cygwin/X is preconfigured to support graphical applications. See Sec-
tion 3.19.3 for details.

The Research Computing User’s Guide 58 /574

Win7 [Running] . Oracle VM VirtualBox

Machine WView Devices Help

]

Recycle Bin x

Hain Options YT Options Y¥T Fonts

-
Admin@Childcare

% zzh -¥ baconBlogin,peregrine,hpo,uwn, edu
Pazsword for bacon@login,peregrine,hpc,un,edusll

8:30 PM ll

o (| 'i:| i)
11/11/2014 |

B @& | @ [Right ctrl

Caution Use of the -X and -Y flags could compromise the security of your Windows system by allowing malicious
programs on the remote host to display phony windows on your PC. Use them only when logging into a trusted host.

Once you are logged into the remote host from the Cygwin/X xterm, you should be able to run graphical Unix programs.

The Research Computing User’s Guide

59/574

Machine WView Devices Help

] @(UnsavedDocumeml-, dit@login.p inehpc.uwm.edu
’ File Edit Wiew Search Tools Documents Help

Recycle Bin ‘:l B - é @ @ ;9\%

MNew Open Save ! Print | Undo Redo ! Cut Copy Paste

o\ B

Find Replace

W

Unsaved Document 1 ﬁl

fd |

AVG 2013

lﬁ
N -

Hain Options Y¥T Options

o Security advisories and up
at http:/ A, FreeBSD, org
for your release first as

The Handbook and FAD docu
along with the mailing li
https/ A, FreeBSD, ora/seq
(or fetched via pkg_add -
2-letter language code, e
in Ausrdlocal/share/doc/f)

If you still have a question
“uname -a', along with any re
az a question to the questiol
unfamiliar with FreeBSD's di

mahual page, IF you are not
Plain Text * | Tab Width: 8 «

Edit Jetc/motd to change thi

8:28PH up 19 days, 9:39, 1 uzer, load averages: 0,01, 0,00, 0,00
fou can uze "pkg_info" to see a list of packages you have installed,
: -- Kongtantinos Konstantinidis <kkonstan@duth,gr>
Cygwin FreeBSD login,peregrine bacon ™ 4013 gedit

Terminal

Ln 1, Col 1

SRl

[ns

garem ||
11A1/2014 | |

Y

@) @ & - v @ | @ & Right Ctrl

You can also run graphical applications from the standard Cygwin terminal if you update your start up script. If you are using

bash (the Cygwin default shell), add the following line to your .bashrc file:

export DISPLAY=unix:0.0

You will need to run source .bashre or restart your bash shell after making this change.
If you are using T shell, the line should read as follows in your .cshrc or .tcshre:

setenv DISPLAY unix:0.0

Again, Cygwin is not the ideal way to run Unix programs on or from a Windows machine, but it is a very quick and easy way
to gain access to a basic Unix environment and many Unix tools. Subsequent sections provide information about other options

besides Cygwin for those with more sophisticated needs.

3.4.2 Windows Subsystem for Linux: Another Compatibility Layer

Windows Subsystem for Linux (WSL) is the latest in a chain of Unix compatibility products provided by Microsoft. It allows
Windows to run a Linux environment under Microsoft’s Hyper-V virtual machine monitor. As of this writing, the user can choose

from a few different Linux distributions such as Ubuntu, Debian, SUSE, or Kali.

Differences from Cygwin:

* WSL runs actual Linux binaries (executables), whereas Cygwin allows the user to compile Unix programs into native Windows
executables. Programs built under WSL can be run on a compatible Linux distribution and vice-versa. They cannot be run on
Windows outside WSL. Which one you prefer depends on your specific goals. For many people, including most of us who just

want to develop or run scientific programs, it makes no difference.

* WSL provides direct access to the native package collection of the chosen Linux distribution. For example, WSL users running
the Debian app can install software directly from the Debian project using apt, just as they would on a real Debian system.
The Debian package collection is much larger than Cygwin’s, so if Cygwin does not have a package for software you need,

WSL might be a good option.

The Research Computing User’s Guide 60/574

e WSL is a virtual machine, based on Microsoft Hyper-V. It requires a substantial amount of memory and requires that virtual-
ization features are enabled in the PC BIOS. If your Windows installation is running in a virtual machine, you must also have
nested virtualization installed, and WSL performance will suffer.

* Cygwin is an independent open source project, while WSL is a Microsoft product. There are pros and cons to each. Microsoft
could change or even terminate support for WSL, as it has done with previous Unix compatibility products, if it no longer
appears to be in the company’s interest to support it. Support for Cygwin will continue as long as the user community is
willing to contribute.

3.4.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Describe three ways we can use Unix software on a Windows machine.
2. What is the advantage of Cygwin over a virtual machine?

3. What is the risk of using Cygwin?

4. What are two advantages of a virtual machine over Cygwin? Explain.

5. What is an advantage of Cygwin over WSL?

3.5 Logging In Remotely

Virtually all Unix systems allow users to log in and run programs over a network from other locations. This feature is intrinsic to
Unix systems, and only disabled on certain proprietary or embedded installations. It is possible to use both GUIs and CLIs in this
fashion, although GUIs may not work well over slow connections such as a slower home Internet services. Different graphical
programs have vastly different bandwidth demands. Some will work fine over a DSL, cable, or WiFi connection, while others
require a fast wired connection.

The command line interface, on the other hand, works comfortably on even the slowest network connections.

Logging into a Unix CLI from a remote location is usually done using Secure Shell (SSH).

@ Caution Older protocols such as rlogin, rsh, and telnet, should no longer be used due to their lack of security. These
protocols transport passwords over the Internet in unencrypted form, so people who manage the gateway computers
they pass through can easily read them.

3.5.1 Unix to Unix
If you want to remotely log in from one Unix system to another, you can simply use the ssh command from the command line.
The general syntax of the ssh command is:

ssh [flags] login-id@hostname

The login-id portion is your login name on the remote host. If you are logging into a campus-managed server, this is likely the
same campus login ID used to log into other services such as VPN, email, Canvas, etc.

The first time you connect to each remote host, you will be asked to verify that you trust it. You must enter the full word "yes" to
continue:

The Research Computing User’s Guide 61/574

The authenticity of host ’unixdevl.ceas.uwm.edu (129.89.25.223)’ can’t be established.
ED25519 key fingerprint is SHA256:askjdkj2ksjfdfamnmnmw5lka7jdkjka,mksjdkssf].

No matching host key fingerprint found in DNS.

This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

If the connection is successful, you will be asked for your password. Note that nothing will echo to your screen as you type the
password. Login panels that echo a **’ or a dot for each character are less secure, since someone looking over your shoulder can
see exactly how long your password is. Knowing the length reduces the parameter space they would have to search in order to
guess the password.

If you plan to run graphical programs on the remote Unix system, you may need to include the —X (enable X11 forwarding) or
-Y (enable trusted X11 forwarding) flag in your ssh command. Run man ssh for full details.

@ Caution Use —X or —Y only when connecting to trusted computers, i.e. those managed by you or someone you trust.
These options allow the remote system to access your display, which can pose a security risk. For example, a hacker
on the remote system could display a fake login panel on your screen in order to steal your login and password.

@ Caution Only ssh should be used to log into remote systems. Older commands such as rsh and telnet lack encryption
and are not secure. If anyone tells you to use rsh or telnet, they should not be trusted regarding any computing issues.

Examples:

shell-prompt: ssh joe@unixdevl.ceas.uwm.edu

Note For licensing reasons, ssh may not be included in basic Linux installations, but it can be very easily added via the package
management system of most Linux distributions.

If you have X11 capabilities and used -X or -Y with your ssh command, you can easily open additional terminals from the
command-line if you know the name of the terminal emulator. Simply type the name of the terminal emulator, followed by
an ’&’ to put it in the background. (See Section 3.18.3 for a full explanation of background jobs.) Some common terminal
emulators are coreterminal, konsole, urxvt, and xterm.

shell-prompt: coreterminal &

3.5.2 Windows to Unix

If you’re connecting to a Unix system from a Windows system, you will need to install some additional software.

Cygwin

The Cygwin Unix-compatibility system is free, quick and easy to install, and equips a Windows computer with most common
Unix commands, including a Unix-style Terminal emulator. Once Cygwin is installed, you can open a Cygwin terminal on your
Windows desktop and use the ssh command as shown above.

The Cygwin installation is very quick and easy and is described in Section 3.4.1.

https://www.cygwin.com/

The Research Computing User’s Guide 62 /574

PuTTY

A more limited method for remotely accessing Unix systems is to install a stand-alone terminal emulator, such as PuTTY,
https://www.chiark.greenend.org.uk/~sgtatham/putty/. PuTTY has a built-in ssh client, and a graphical dialog box for connecting
to a remote machine. For more information, see the PuTTY documentation.

3.5.3 Terminal Types

In rare cases, you may be asked to specify a terminal type when you log in:

TERM= (unknown)

Terminal features such as cursor movement and color changes are triggered by sending special codes (characters or character
combinations called magic sequences) to the terminal. Pressing keys on the terminal sends codes from the terminal to the
computer.

Different types of terminals use different magic sequences. PuTTY and most other terminal emulators emulate an "xterm"
terminal, so if asked, just type the string "xterm" (without the quotes).

If you fail to set the terminal type, some programs such as text editors will not function. They may garble the screen and fail to
recognize special keys such as arrows, page-up, etc.

You can set the terminal type after logging in, but the methods for doing this vary according to which shell you use, so you may
just want to log out and remember to set the terminal type when you log back in.

Example 3.3 Practice Break

Note For this, and all practice breaks that follow, students should do the exercises shown. If you are reading this for a class,
then these exercises are meant to be done in class. Try them on your own, do your best to understand what is happening, and
ask the instructor for clarification if necessary.

Remotely log into another Unix system using the ssh command or PuTTY, or open a shell on your Mac or other Unix system.
Then try the commands shown below.

Unix commands are below preceded by the shell prompt "shell-prompt: ". Other text refers to input to the program (command)
currently running. You must exit that program before running another Unix command.

Lines beginning with ’#° are comments to help you understand the text below, and not to be typed.

Don’t worry if you’re not clear on what these commands do. You do not need to memorize them right now. This exercise is only
meant to help you understand the Unix CLI. Specific commands will be covered later.

Print the current working directory
shell-prompt: pwd

List files in the current working directory (folder)
shell-prompt: 1ls
shell-prompt: 1s -al

Two commands on the same line. A ’;’ 1is the same as a newline in Unix.
shell-prompt: 1ls; ls /etc

List files in the root directory
shell-prompt: 1ls /

List commands in the /bin directory
shell-prompt: 1ls /bin

Search the directory tree under /etc
shell-prompt: find /etc -name ’*.conf’

Create a subdirectory

https://www.chiark.greenend.org.uk/~sgtatham/putty/

The Research Computing User’s Guide 63 /574

shell-prompt: mkdir -p Data/IRC

Change the current working directory to the new subdirectory
shell-prompt: cd Data/IRC

Print the current working directory
shell-prompt: pwd

See if the nano editor is installed
nano is a simple text editor (like Notepad on Windows)
shell-prompt: which nano

If this does not report "command not found", then do the following:

Try the nano editor. ©Nano is an add-on tool, not a standard tool on
Unix systems. Some systems will not have it installed.
shell-prompt: nano sample.txt

Type the following text into the nano editor:

This is a text file called sample.txt.
I created it using the nano text editor on Unix.

Then save the file (press Ctrl+o), and exit nano (press Ctrl+x).
You should now be back at the Unix shell prompt.

Try the "vi" editor

vi is standard editor on all Unix system. It is more complex than nano.
It is good to know vi, since all Unix systems have it.

shell-prompt: vi sample.txt

Type 'i’ to go into insert mode

Type in some text

Type Esc to exit insert mode and go back to command mode
Type :w to save

Type :gq to quit

"ZZ" is a shortcut for ":w:q"
shell-prompt: 1s

Echo (concatenate) the contents of the new file to the terminal
shell-prompt: cat sample.txt

Count lines, words, and characters in the file
shell-prompt: wc sample.txt

Change the current working directory to your home directory
shell-prompt: cd
shell-prompt: pwd

Show your login name
shell-prompt: id -un

Show the name of the Unix system running your shell process
shell-prompt: hostname

Show operating system and hardware info
shell-prompt: uname -a

Today’s date
shell-prompt: date

The Research Computing User’s Guide

64 /574

Display a simple calendar
shell-prompt: cal
shell-prompt: cal 2023
shell-prompt: cal nov 2018
shell-prompt: cal jan 3000

CLI calculator with unlimited precision and many functions
shell-prompt: bc -1

scale=50

sqrt (2)

812

A

= N~ 00

2
B=
b=
@
(-b+sqgrt (b*2-4xaxc)) /2*a

2%xa
quit

Show who is logged in and what they are running
shell-prompt: w
shell-prompt: finger

How much disk space is used by the programs in /usr/local/bin?
shell-prompt: du —-sh /usr/local/bin/

Copy a file to the current working directory
shell-prompt: cp /etc/profile
shell-prompt: 1s

View the copy
shell-prompt: cat profile

View the original
shell-prompt: cat /etc/profile

Remove the file
shell-prompt: rm profile
shell-prompt: 1s

Exit the shell (which logs you out from an ssh session)

This can also be done by typing Ctrl+d, which is the ASCII/ISO
character for EOT (end of transmission)

shell-prompt: exit

3.5.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What must be added to Unix to allow remote access?
Can we run graphical programs on remote Unix systems? Elaborate.

Does the CLI require a fast connection for remote operation?

el

"joe", assuming you want to run a graphical X11 application?

What command would you use to log into a remote system with host name "myserver.mydomain.edu" using the user name

The Research Computing User’s Guide 65/574

5. What should you do if someone advises you to use rsh or telnet?
6. How can Windows users add an ssh command like the one used on Unix systems?

7. What is the purpose of the TERM environment variable? What will happen if it is not set correctly?

3.6 Unix Command Basics

A Unix command is built from a command name and optionally one or more command line arguments. Arguments can be either
flags or data.

ls —a -1 /etc /var

AN AAAAA AAAAAAAAA

\ | |
| | Data Arguments
| Flags
Command name

* The command name is either the filename of a program or a command built into the shell. For example, the Is command is a
program that lists the contents of a directory. The ¢d command is part of the shell.

* Most commands have optional flags (sometimes called options) that control the behavior of the command. By convention,
flags begin with a ’-’ character.

Note Unix systems do not enforce this, but very few commands violate it. Unix programmers tend to understand the benefits
of conventions and don'’t have to be coerced to follow them.

The flags in the example above have the following meaning:

—a: tells Is to show "hidden" files (files whose names begin with ’.”, which Is would not normally list).

—1: tells Is to do a "long listing", which is to show lots of information about each file and directory instead of just the name.
Single-letter flags can usually be combined, e.g. —a -1 can be abbreviated as —al.

Most newer Unix commands also support long flag names, mainly to improve readability of commands used in scripts. For
example, in the Unix zip command, —C and -—preserve-case are synonymous. Using -C saves typing, but --preserve-case
is more easily understood.

* Many commands also accept one or more data arguments, which provide input data to the command, or instruct it where to
send output. Such arguments may be the actual input data or they may be the names of files or directories that contain input or
receive output. The /etc and /var arguments above are directories to be listed by Is. If no data arguments are given to Is, it
lists the current working directory (described in Section 3.8).

For many Unix commands, the flags must come before the data arguments. A few commands require that certain flags appear in
a specific order. Some commands allow flags and data arguments to appear in any order. Unix systems do not enforce any rules
regarding arguments. How they behave is entirely up to the programmer writing the command. However, the vast majority of
commands follow conventions, so there is a great deal of consistency in Unix command syntax.

The components of a Unix command are separated by white space (space or tab characters). Hence, if an argument contains any
white space, it must be enclosed in quotes (single or double) so that it will not be interpreted as multiple separate arguments.

The Research Computing User’s Guide 66 /574

Example 3.4 White space in an Argument
Suppose you have a directory called My Programs, and you want to see what’s in it. You might try the following:

shell-prompt: 1ls My Programs

The above command fails because "My" and "Programs" are interpreted as two separate arguments. The Is command will look
for two separate files or directories called "My" and "Programs". In this case, we must use quotes to bind the parts of the directory
name together into a single argument. Either single or double quotes are accepted by all common Unix shells. The difference
between single and double quotes is covered in Chapter 4.

shell-prompt: 1ls 'My Programs’
shell-prompt: 1ls "My Programs"

As an alternative to using quotes, we can escape the space by preceding it with a backslash (’\") character. This will save one
keystroke if there is only one character to be escaped in the text.

shell-prompt: 1ls My\ Programs

Example 3.5 Practice Break
Try the following commands:

shell-prompt: 1s

shell-prompt: 1ls -al
shell-prompt: 1ls /etc
shell-prompt: 1ls -al /etc
shell-prompt: mkdir My Programs
shell-prompt: 1s

shell-prompt: rmdir My
shell-prompt: rmdir Programs
shell-prompt: mkdir ’'My Programs’
shell-prompt: 1s

shell-prompt: 1ls My Programs
shell-prompt: 1ls "My Programs"

3.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are the three major components of a Unix command?
2. What are the two sources of the command name?

3. How do we know whether an argument is a flag or data?

>

What is the advantage of short flags and the advantage of long flags?
What do data argument represent?

What rules does Unix enforce regarding the order of arguments?

N o »

What separates one Unix argument from the next?

8. Can an argument contain whitespace? If so, how?

The Research Computing User’s Guide 67 /574

3.7 Basic Shell Tools

3.7.1 Common Unix Shells

There are many different shells available for Unix systems. This might sound daunting if you’re new to Unix, but fortunately,
like most Unix tools, all the common shells adhere to certain standards. All of the common shells are derived from one of two
early ancestors:

* Bourne shell (sh) is the de facto basic shell on all Unix systems, and is derived from the original Unix shell developed at AT&T.
* C shell (csh) offers mostly the same features as Bourne shell, but the two differ in the syntax of their scripting languages, which

are discussed in Chapter 4. The C shell syntax is designed to be more intuitive and similar to the C language.

Most Unix commands are exactly the same regardless of which shell you are using. Differences will only become apparent when
using more advanced command features or writing shell scripts, both of which we will cover later.

Common shells derived from Bourne shell include the following:

* Almquist shell (ash), used as the Bourne shell on some BSD systems.

Korn shell (ksh), an extended Bourne shell with many added features for user-friendliness.

* Bourne again shell (bash) another extended Bourne shell from the GNU project with many added features for user-friendliness.
Used as the Bourne shell on some Linux systems.

* Debian Almquist shell (dash), a reincarnation of ash which is used as the Bourne shell on Debian based Linux systems.
Common shells derived from C shell include the following:

* T shell (tcsh), and extended C shell with many added features for user-friendliness.

e Hamilton C shell, an extended C shell used primarily on Microsoft Windows.

Unix systems differ in which shells are included in the base installation, but most shells can be easily added to any Unix system
using the system’s package manager.

3.7.2 Command History

Most shells remember a configurable number of recent commands. This command history is saved both in memory and to disk,
so that you can still recall this session’s commands next time you log in. The exact mechanisms for recalling those commands
varies from shell to shell, but some of the features common to all shells are described below.

Most modern shells support scrolling through recent commands by using the up-arrow and down-arrow keys. Only very early
shells lack this capability.

Note This feature may not work if your TERM variable is not set properly, since the arrow keys send magic sequences that may
differ among terminal types.

The history command lists the commands that the shell currently has in memory.

shell-prompt: history

A command consisting of an exclamation point (!) followed by any character string causes the shell to search for the most recently
executed command that began with that string. This is particularly useful when you want to repeat a complicated command.

The Research Computing User’s Guide 68 /574

shell-prompt: find Programs -name ’*.0’ -exec rm -i ’'{}’ \;
shell-prompt: !find

An exclamation point followed by a number runs the command with that history index:

shell-prompt: history
385 13;42 more output.txt
386 13:54 1s
387 13:54 cat /etc/hosts
shell-prompt: !386

1s

Avi-admin/ Materials—-Studio/ iperf-bsd
Backup@ New-cluster/ notes

Books/ Peregrine—admin/ octave-workspace

Tantalizing sneak preview: We can check the history for a particular pattern such as "find" as follows:

shell-prompt: history | grep find

More on the "l find" in Section 3.13.

3.7.3 Auto-completion

In most Unix shells, you need only type enough of a command or argument filename to uniquely identify it. At that point,
pressing the TAB key will automatically fill in the rest for you. Try the following:

shell-prompt: touch sample.txt
shell-prompt: cat sam<Press the TAB key now>

If there are other files in your directory that begin with "sam", you may need to type a few additional characters before the TAB,
like ’p’ and ’1” before auto-completion will work.

3.7.4 Command-line Editing

Modern shells allow extensive editing of the command currently being entered. The key bindings for different editing features
depend on the shell you are using and the current settings. Some shells offer a selection of different key bindings that correspond
to Unix editors such as vi or Emacs.

See the documentation for your shell for full details. Below are some examples of default key bindings for shells such as bash
and tesh.

Key Action

Left arrow Move left

Right arrow Move right
Ctrl+a Beginning of line
Ctrl+e End of line
Backspace or Ctrl+h Delete left
Ctrl+d Delete current

Table 3.3: Default Key Bindings in some Shells

3.7.5 Gilobbing (File Specifications)

There is often a need to specify a large number of files as command line arguments. Typing all of them would be tedious, so
Unix shells provide a mechanism called globbing that allows short, simple patterns to match many file names. This allows us to
type a brief specification that represents a large number (a glob) of files.

The Research Computing User’s Guide 69/574

Symbol Matches

" Any sequence of characters (including none) except a’.” in
the first character of the filename.

Any single character, except a ’.’ in the first character of

? the filename.

[string] Any character in string

[c1-c2] Any character from c1 to c2, inclusive
{thing1,thing2} Thingl or thing2

Table 3.4: Globbing Symbols

These patterns are built from literal text and/or special symbols called wild cards as shown in Table 3.4.

Normally, the shell handles these special characters, expanding globbing patterns to a list of matching file names before the
command is executed.

If you want an argument containing special globbing characters to be sent to a command in its raw form, it must be enclosed in
quotes, or each special character must be escaped (preceded by a backslash, \).

Certain commands, such as find need to receive the pattern as an argument and attempt to do the matching themselves rather
than have it done for them by the shell. Therefore, patterns to be used by the find command must be enclosed in quotes.

shell-prompt: 1ls *.txt # Lists all files ending in ".txt"
shell-prompt: 1ls "x.txt" # Fails, unless there is a file called ’«.txt’
shell-prompt: 1ls ’*.txt’ # Fails, unless there is a file called ’«.txt’
shell-prompt: 1ls .x*.txt # Lists hidden files ending in ".txt"
shell-prompt: ls [A-Za-z]x # Lists all files and directories

whose name begins with a letter

shell-prompt: find . —-name *.txt # Fails

shell-prompt: find . -name ’*.txt’ # List .txt files in all subdirectories
shell-prompt: 1ls x.{c,c++,£90}

as LANG, LC_COLLATE, and LC_ALL. See Section 3.16 for general information about the environment. Information
about locale and collation can be found online. Behavior depends on these settings as well as which Unix shell you are
using and the shell’s configuration settings. Setting LANG and the LC_ variables to C or C.UTF-8 will usually ensure
the behavior described above.

@ Caution The exact behavior of character ranges such as [A-Z] may be affected by locale environment variables such

3.7.6 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is the de facto standard shell on Unix systems?

2. How do most Unix commands differ when run under one shell such as C shell as opposed to running under another such
as Bourne shell or Bourne again shell?

3. What if a shell we like or need is not present on our Unix installation?
How can we quickly rerun the previous command in most Unix shells?

Show a Unix command that lists all recent commands executed from this shell.

SAE U

Show a Unix command that runs the last command that began with "Is".

The Research Computing User’s Guide 70/574

7. Given the shell history shown below, show a Unix command that runs the last command used to log into unixdevl.

984 16:48 vi .ssh/known_hosts

985 16:50 ssh -X bacon@unixdevl.ceas.uwm.edu
986 16:52 ssh -X —-C bacon@unixdevl.ceas.uwm.edu
987 16:58 ape

988 16:59 ssh -X -C bacon@unixdevl.ceas.uwn.edu

8. How can we avoid typing a long file name or command name in most shells?
9. How can we instantly move to the beginning of the command we are currently typing?
10. How do we list all the non-hidden files in the current directory ending in ".txt"?
11. How do we list all the hidden files in the current directory ending in ".txt"?
12. How do we list all the files in /etc beginning with "hosts"?
13. How do we list all the files in the current directory starting with a lower case letter and ending in ".txt"?
14. How do we list all the files in the current directory starting with any letter and ending in ".txt"?
15. How do we list all the non-hidden files in the current directory ending with ".pdf" or ".txt"?
16. How do we list all the files in /etc and all other directories under /etc with names ending in ".conf"?
17. When are globbing patterns normally expanded to a list of files?

18. How can we include a file name in a command if the file name contains a special character such as **’ or ’[’?

3.8 Processes

A program is a file containing statements or commands in the form of source code or machine code. A process, in Unix
terminology, is the execution of a program. By this we mean the running of a program, not a blindfold, a cigarette, and firing
squad. A program is an object. A process is an action utilizing that object. A grocery list is like a program. A trip to the grocery
store to buy what is on the list is like a process.

Unix is a multitasking system, which means that many processes can be running at any given moment, i.e. there can be many
active processes.

When you log in, the system creates a new process to run your shell program. The same happens when other people log in.
Hence, while everyone may be using the same shell program, they are all running different shell processes.

When you run a program (a command) from the shell, the shell creates a new process to run the program. Hence, you now have
two processes running: the shell process and the command’s process. The shell then normally waits for that child process to
complete before printing the shell prompt again and accepting another command.

The process created by the shell to run your command is called a child process of the shell process. Naturally, the shell process
is then called the parent process of the command process.

Each process is uniquely identified by an integer serial number called the process ID, or PID.

Unix systems also keep track of each process’s status and resource usage, such as memory, CPU time, etc. Information about
your currently running processes can be viewed using the ps (process status) command:

shell-prompt: ps

PID TTY TIME CMD
7147 ttys000 0:00.14 -tcsh
7438 ttys000 0:01.13 ape notes.dbk unix.dbk

7736 ttys001 0:00.13 —-tcsh

The Research Computing User’s Guide 71/574

Example 3.6 Practice Break
Run the ps command. What processes do you have running?

shell-prompt: ps

What if we want to see all the processes on the system, instead of just our own? On most systems, we can add the —a (include
other peoples’ processes) and —x (include processes not started from a terminal) flags.

shell-prompt: ps —-ax

Another useful tool is the top command, which monitors all processes in a system and displays system statistics and the top
(most active) processes every few seconds. Note that since top is a full-terminal command, it will not function properly unless
the TERM environment variable is set correctly.

Example 3.7 Practice Break
Run the top command. What processes are using the most CPU time? Type ’q’ to quit top.

shell-prompt: top

3.8.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. How does a process differ from a program?

If 10 people are logged in and using the same Unix shell, how many shell programs are there? How many shell processes?
‘What normally happens when you run a program from the shell?

How are processes identified in Unix?

Show a Unix command that lists all the processes currently running on the system.

AN

Show a Unix command that monitors which processes are using the most CPU and memory resources.

3.9 The Unix File System

3.9.1 Unix Files

A Unix file is simply a sequence of bytes (8-bit values) stored on a disk and given a unique name. The bytes in a file may be
printable characters such as letters, digits, punctuation symbols, invisible control characters (which cause a printer or terminal
to perform actions such as backspacing or scrolling), part of a number (a typical integer or floating point number consists of 8
bytes), or other non-character, non-numeric data.

This is how Unix sees all files. It takes no interest whatsoever in the meaning of the bytes within a file. The meaning of the
content is determined solely by the programs using the file.

Text vs Binary Files

Files are often classified as either text or binary files. All of the bytes in a text file are interpreted as ASCII/ISO characters by the
programs that read or write the file, while binary files may contain both character and non-character data.

Again, Unix does not make a distinction between text and binary files. This is left to the programs that use the files.

The Research Computing User’s Guide 72 /574

Example 3.8 Practice Break
Try the following commands:

shell-prompt: cat /etc/hosts

What do you see? The /etc/hosts file is a text file, and cat is used here to echo (concatenate) it to the terminal output.
Now try the following:

shell-prompt: cat /bin/ls

What do you see? The file /bin/1s is not a text file. It contains binary program code, not characters. The cat command
assumes that the file is a text file and sends each byte to your terminal. The terminal tries to interpret each byte as an ASCII/ISO
character and display it on the screen. Since the file does not contain a sequence of characters, it appears as nonsense on your
terminal. Some of the bytes sent to the terminal may even knock it out of whack, causing it to behave strangely. If this happens,
run the reset command to restore your terminal to its default state.

Unix vs. Windows Text Files

While it is the program that interprets the contents of a file, there are some conventions regarding text file format that all Unix
programs follow, so that they can all manipulate the same files. Unfortunately, Windows programs follow different conventions.
Unix programs assume that text files terminate each line with a control character known as a line feed (also known as a newline
or NL for short), which is the 10th character in the standard ASCII/ISO character sets. Windows programs use both a carriage
return or CR (13th character) and NL.

Text files created on Windows will contain both a CR and NL at the end of each line. Text files created on Unix will have only
an NL. This can cause problems for programs on either Unix or Windows. Hence, it is not a good idea to use a Windows editor
to write code for Unix systems or vice-versa.

The dos2unix and unix2dos commands can be used to clean up files that have been transferred between Unix and Windows.
These programs convert text files between the Windows and Unix standards. If you’ve edited a text file on a non-Unix system,
and are now using it on a Unix system, you can clean it up by running:

shell-prompt: dos2unix filename

The dos2unix and unix2dos commands are not standard with most Unix systems, but they are free programs that can easily be
added via most package managers.

@ Caution Note that dos2unix and unix2dos should only be used on text files. They should never be used on binary
files, since the contents of a binary file are not meant to be interpreted as characters such as line feeds and carriage
returns.

3.9.2 File system Organization
Basic Concepts

A Unix file system contains files and directories. A file is like a document, and a directory is like a folder that contains documents
and/or other directories. The terms "directory" and "folder" are interchangeable, but "directory" is the standard term used in Unix.

Directories are so called because they serve the same purpose as the directory you might find in the lobby of an office building:
They are listings that keep track of what files and other directories are called and where they are located on the disk.

The Research Computing User’s Guide 73 /574

Note

Unix file systems use case-sensitive file and directory names. l.e., Temp is not the same as t emp, and both can coexist in the
same directory.

macOS is the only mainstream Unix system that violates this convention. The standard OS X file systems is case-preserving,
but not case-sensitive. This means that if you call a file Temp, it will remember that the T is capital, but it can also be referred
to as temp, tEmp, etc. Only one of these files can exist in a given directory at any one time.

A Unix file system can be visualized as a tree, with each file and directory contained within another directory. Figure 3.2 shows a
small portion of a typical Unix file system. On a real Unix system, there are usually thousands of files and directories. Directories
are shown in green and files are in yellow.

Figure 3.2: Sample of a Unix File system

Unix uses a forward slash (/) to separate directory and file names while Windows uses a backslash (\).

The one directory that is not contained within any other is known as the root directory, whose name under Unix is /. There
is exactly one root directory on every Unix system. Windows systems, on the other hand, have a root directory for each disk
partition such as C:\ and D:\.

The Cygwin compatibility layer works around the separate drive letters of Windows by unifying them under a common parent
directory called /cygdrive. Hence, for Unix commands run under Cygwin, /cygdrive/c is equivalent to c:\, /cygdrive/d is equivalent
to d:\, and so on. This allows Cygwin users to do things like search multiple Windows drive letters with a single command starting
in /cygdrive.

Unix file system trees are fairly standardized, but most have some variation. For instance, all Unix systems have a /bin and
a /usr/bin, which contain standard Unix commands. Not all of them have /home or /usr/local. Many Linux systems install
commands from add-on packages into /usr/bin, mixing them with the standard Unix commands that are essential to the basic
functioning of the system. Other systems such as most BSDs keep them separated in /usr/local/bin or /usr/pkg/bin.

The root directory is the parent of /bin and /home and an ancestor of all other files and directories.

The /bin and /home directories are subdirectories, or children of /. Likewise, /home/joe and /home/sue are subdirectories of
/home, and grandchildren of /.

All of the files in and under /home comprise a subtree of /home.

The children of a directory, all of its children, and so on, are known as descendants of the directory. All files and directories on a
Unix system, except /, are descendants of /.

Each user has a home directory, which can be arbitrarily assigned, but is generally a child of /home on many Unix systems or of
/Users on macOS. Most or all of a user’s files and subdirectories are found under their home directory. In the example above,
/home/joe is the home directory for user joe, and /home/sue is the home directory for user sue.

In some situations, a home directory can be referred to as ~ or ~user. For example, user joe can refer to his home directory as ~,
~/, or ~joe, while he can only refer to sue’s home directory as ~sue.

The Research Computing User’s Guide 74574

Absolute Path Names

The absolute path name, also known as full path name, of a file or directory denotes the complete path from / (the root directory)
to the file or directory of interest. It is the path we would "walk" from the root directory (/) to the file or directory of interest.
For example, the absolute path name of Sue’s .cshrc file is /home/sue/.cshrc, and the absolute path name of the ape command is
/usr/local/bin/ape. To walk the directory tree, we would start in / and progress from there:

Start in /

Go to /usr
Go to /usr/local
Go to /usr/local/bin

End at /usr/local/bin/ape

The absolute path name is the only way to uniquely identify a file or directory in the file system.

Note An absolute path name always begins with °/’ or a ’~’, noting that ’~’ is shorthand for a path that begins with a ’/’ such as
/home/joe or /Users/joe.

Example 3.9 Practice Break
Try the following commands:

shell-prompt: 1s
shell-prompt: 1ls /etc
shell-prompt: cat /etc/hosts
shell-prompt: 1ls ~

Current Working Directory

Every Unix process has an attribute called the current working directory, or CWD. This is the directory that the process is
currently "in". When you first log into a Unix system, the shell process’s CWD is set to your home directory.

Note It is important to understand that the CWD is a property of each process, not of a user or a program.

The pwd command prints the CWD of the shell process. The ed command changes the CWD of the shell process. Running
cd with no arguments sets the CWD to your home directory, much like clicking your heels together three times to get back to
Kansas.

Example 3.10 Practice Break
Try the following commands:

shell-prompt: pwd
shell-prompt: cd /
shell-prompt: pwd
shell-prompt: cd

shell-prompt: pwd

Many commands, such as Is, use the CWD as a default if you don’t provide a directory name on the command line. For example,
if the CWD is /home/ joe, then the following commands are the same:

shell-prompt: 1s
shell-prompt: 1ls /home/joe
shell-prompt: 1ls ~joe

The Research Computing User’s Guide 75/574

Relative Path Names

Whereas an absolute path name denotes the path from / to a file or directory, the relative path name denotes the path from the
CWD to a file or directory.

Any path name that does not begin with a ’/’ or ’~’ is interpreted as a relative path name. The absolute path name is then derived
by appending the relative path name to the CWD. For example, if the CWD is /et c, then the relative path name hosts refers
to the absolute path name /etc/hosts, and the relative path name of /etc/ssh/ssh_configis ssh/ssh_config.

absolute path name = CWD + "/" + relative path name

Note Since the CWD is a property of each process, a relative path name is not the same for all processes. Relative path names
for the same file may be different for different processes, or for the same process before and after it changes its CWD. For
example the meaning of the relative path name bin is /bin when CWD is/and /usr/bin when CWDis /usr.

Note Relative path names are handled at the lowest level of the operating system, by the Unix kernel. This means that they
can be used anywhere: in shell commands, in C or Fortran programs, etc.

When you run a program from the shell, the new process inherits the CWD from the shell. Hence, you can use relative path
names as arguments in any Unix command, and they will use the CWD inherited from the shell process. For example, the two
cat commands below have the same effect.

shell-prompt: cd /etc # Set shell’s CWD to /etc
shell-prompt: cat hosts # Inherits CWD from shell, so hosts = /etc/hosts
shell-prompt: cat /etc/hosts # Same effect as above

Wasting Time

The ed command is one of the most overused Unix commands. Many people use it where it is completely unnecessary
and actually results in significantly more typing than needed. Don’t use cd if it is actually more work than using an
absolute path name as an argument. For example, consider the sequence of commands:

@ shell-prompt: cd /etc

shell-prompt: more hosts
shell-prompt: cd

The same effect could have been achieved much more easily using the following single command:

shell-prompt: more /etc/hosts

Note In almost all cases, absolute path names and relative path names are interchangeable. You can use either type of path
name as a command line argument, or within a program.

Example 3.11 Practice Break
Try to predict the results of the following commands before running them:

shell-prompt: cd
shell-prompt: pwd
shell-prompt: cd /etc
shell-prompt: pwd
shell-prompt: cat hosts
shell-prompt: cat /etc/hosts
shell-prompt: cd
shell-prompt: pwd
shell-prompt: cat hosts

Why does the last command result in an error?

The Research Computing User’s Guide 76 /574

Avoid Absolute Path Names
The relative path name is potentially much shorter than the equivalent absolute path name. Using relative path names also makes
code more portable.

Suppose you have a project contained in the directory /Users/ joe/Thesis on your Mac. Now suppose you want to work on
the same project on an HPC cluster, where there is no /Users directory, and you have to store it in /sharel/joe/Thesis.

The absolute path name of every file and directory under Thesis will be different on the cluster than it is on your Mac. This
can cause major problems if you were using absolute path names in your scripts, programs, and makefiles. Statements like the
following will have to be changed in order to run the program on a different computer.

infile = fopen("/Users/joe/Thesis/Inputs/inputl.txt", "r");

sort /Users/joe/Thesis/Inputs/names.txt

Note No program should ever have to be altered just to make it run on a different computer. Changes like these are a source
of regressions (new program bugs).

While the absolute path names change when you move the Thesis directory, the path names relative to the Thesis directory
remain the same. For this reason, absolute path names should be avoided.

The statements below will work on any computer as long as the program or script is running with Thesis as the CWD. It does
not matter where the Thesis directory is located, so long as the Inputs directory is its child.

infile = fopen ("Inputs/inputl.txt", "r");

sort Inputs/names.txt

Special Directory Names

In addition to absolute path names and relative path names, there are a few special symbols for directories that are commonly
referenced:

Symbol Refers to

The current working directory

The parent of the current working directory
~ Your home directory

~user user’s home directory

Table 3.5: Special Directory Symbols

The . notation for CWD is useful for copying files to CWD and other commands that require a target directory name.

shell-prompt: cp /etc/hosts

It is also useful if a mishap occurs, leading to the creation of a file whose name begins with a special character such as ’-” or °~’.
If we have a file called "-file.txt", we cannot remove it with rm -file.txt, since the rm command will think the ’-’ indicates a flag
argument. To get around this, we simply need to make the argument not begin with a ’->. We can either use the absolute path
name of the file, e.g. /home/joe/-file.txtor ./-file.txt. ./path is exactly the same as path.

The ".." notation refers to the parent of the CWD and allows for relative path names that are not under the CWD. For example,
if the CWD is /home/ joe, then the relative path of /home/sue/.cshrcis ../sue/.cshrc and the relative path name
of /etc/hostsis ../../etc/hosts. We can "walk" a relative path such as ../../etc/hosts just as we walk an
absolute path:

The Research Computing User’s Guide 771574

Start at /home/joe .)

(
Go to /home (..)
Go to / (../..)
Go to /etc (../../etc)
End at /etc/hosts (../../etc/hosts)

Note that /home/joe/../sue/.cshrc (/home/joe + / + ../sue/.cshrc)is a valid absolute path name, but it
can be shortened to /home/sue/.cshrc. We can always remove a . ./ along with the path component to the left of it,
such as joe/../. Likewise, /home/joe/../../etc/hosts can be reduced to /home/ . ./etc/hosts and further to
/etc/hosts.

Example 3.12 Practice Break
Try the following commands and see what they do:

shell-prompt: cd

shell-prompt: pwd

shell-prompt: 1ls

shell-prompt: 1ls ~

shell-prompt: 1ls

shell-prompt: mkdir Data Scripts
shell-prompt: cp /etc/hosts
shell-prompt: mv hosts Data
shell-prompt: 1ls Data
shell-prompt: 1ls ./Data
shell-prompt: cd Data
shell-prompt: cd ../Scripts
shell-prompt: 1ls ..
shell-prompt: 1ls ../Data
shell-prompt: more ../Data/hosts
shell-prompt: rm ../Data/hosts
shell-prompt: 1ls ~/Data
shell-prompt: ls /bin
shell-prompt: cd

shell-prompt: pwd

3.9.3 Ownership and Permissions

Overview

Every file and directory on a Unix system has inherent access control features based on a simple system:

 Every file and directory belongs to an individual user and to a group of users.

* There are 3 types of permissions which are controlled separately from each other:
— Read
— Write (modity)

— Execute (e.g. run a file if it’s a program)
* Read, write, and execute permissions can be granted or denied separately for each of the following:

— The individual who owns the file (user)
— The group that owns the file (group)

— All other users on the system (a hypothetical group known as "world" (other)

The Research Computing User’s Guide 78 /574

Execute permissions on a file mean that the file can be executed as a script or a program by typing its name. It does not mean
that the file actually contains a script or a program: It is up to the owner of the file to set the execute permissions appropriately
for each file.

Execute permissions on a directory mean that permitted users can cd into it. Users only need read permissions on a directory to
list it or access a file within it, but they need execute permissions in order for their processes to make it the CWD.

Unix systems provide this access using 9 on/off switches (bits) associated with each file.
Viewing Permissions

If you do a long listing of a file or directory, you will see the ownership and permissions:

shell-prompt: 1ls -1

drwx—————- 2 Jjoe users 512 Aug 7 07:52 Desktop/
drwxr-x——— 39 joe users 1536 Aug 9 22:21 Documents/
drwxr—-xr—x 2 Jjoe users 512 Aug 9 22:25 Downloads/
—rwW—r——r—-— 1 joe users 82118 Aug 2 09:47 bootcamp.pdf

The leftmost column shows the type of object and the permissions for each user category.

A ’-’ in the leftmost character means a regular file, ’d’ means a directory, ’I’ means a link. etc. Running man Is will reveal all
the codes.

The next three characters are, in order, read, write and execute permissions for the owner (joe).
The next three after that are permissions for members of the owning group (users).
The next three are permissions for world (other).

A’-’ in a permission bit column means that the permission is denied for that user or set of users and an ’r’, w’, or *’x’ means that
read, write, or execute is permitted.

The next three columns show the number of links (different path names for the same file), the individual and group ownership of
the file or directory. The remaining columns show the size, the date and time it was last modified, and name. In addition to the
’d’ in the first column, directory names are followed by a ’/’ if the Is is so configured.

You can see above that Joe’s Desktop directory is readable, writable, and executable for Joe, and completely inaccessible to
everyone else.

Joe’s Document s directory is readable, writable and executable for Joe, and readable and executable for members of the group
"users". Users not in the group "users" cannot access the Documents directory at all.

Joe’s Downloads directory is readable and executable to anyone who can log into the system.

The file boot camp . pdf is readable by group and world, but only writable by Joe. It is not executable by anyone, which makes
sense because a PDF file is not a program.

Setting Permissions

Users cannot change individual ownership on a file, since this would allow them to subvert disk quotas and do other malicious
acts by placing their files under someone else’s name. Only the superuser (the system administrator) can change the individual
ownership of a file or directory.

Every user has a primary group and may also be a member of supplementary groups. Users can change the group ownership of
a file to any group that they belong to using the chgrp command, which requires a group name as the second argument and one
or more path names following the group:

shell-prompt: chgrp group path [path ...]

All sharing of files on Unix systems is done by controlling group ownership and file permissions.

File permissions are changed using the chmod command:

The Research Computing User’s Guide 79/574

shell-prompt: chmod permission-specification path [path ...]

The permission specification has a symbolic form, and a raw form, which is an octal number.

The symbolic form consists of any of the three user categories "u’ (user/owner), g’ (group), and o’ (other/world) followed by a

LI I

"+’ (grant) or -’ (revoke), and finally one of the three permissions ’r’, ’w’, or "x’.
To add read and execute (cd) permissions for group and world on the Documents directory:

shell-prompt: chmod go+rx Documents

Sometimes it is impossible to express the changes we want to make in one simple specification. In that case, we can use a
compound specification, two or more basic specs separated by commas. Remember that white space indicates the end of an
argument, so we cannot have any white space next to the comma.

To revoke all permissions for world on the Documents directory and grant read permission for the group:

shell-prompt: chmod o-rwx,g+r Documents

Disable write permission for everyone, including the owner, on bootcamp.pdf. This can be used to prevent the owner from
accidentally deleting an important file.

shell-prompt: chmod ugo-w bootcamp.pdf

Run man chmeod for additional information.

The raw form for permissions uses a 3-digit octal number to represent the 9 permission bits. This is a quick and convenient
method for computer nerds who can do octal/binary conversions in their head.

110100100 = rw—r——r——
111101000

shell-prompt: chmod 644 bootcamp.pdf # 644
shell-prompt: chmod 750 Documents # 750

IrwXr—X———

Caution NEVER make any file or directory world-writable. Doing so allows any other user to modify it, which is a
serious security risk. A malicious user could use this to install a Trojan Horse program under your name, for example.

By default, new files you create are owned by you and your primary group. If you are a member of more than one group and
wish to share a directory with one of your supplementary groups, it may also be helpful to set a special flag on the directory so
that new files created in it will have the same group as the directory, rather than your primary group. Then you won’t have to
remember to chmod every new file you create.

shell-prompt: chmod gt+s Shared-research

Example 3.13 Practice Break
Try the following commands, and try to predict the output of each Is before you run it.

shell-prompt: touch testfile
shell-prompt: 1ls -1

shell-prompt: chmod go-rwx testfile
shell-prompt: 1ls -1

shell-prompt: chmod o+rw testfile
shell-prompt: 1ls -1

shell-prompt: chmod gtrwx testfile
shell-prompt: 1ls -1

shell-prompt: rm testfile

Now set permissions on testfile so that it is readable, writable, and executable by you, only readable by the group, and inaccessible
to everyone else.

The Research Computing User’s Guide 80/574

3.9.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

&

N o »

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

. What is a file in the viewpoint of Unix?

What is the difference between a text file and a binary file?

What will happen if you echo a binary file to your terminal?

What is the difference between Windows and Unix text files?

How can we convert text files between the Unix and Windows standards?

What is a directory?

What does it mean that Unix filenames are case-sensitive?

What is a root directory?

How many root directories does a Unix system have? How many does Windows have?
What is contained in the /bin and /ust/bin directories?

What is a subdirectory?

What is a home directory?

What is an absolute path name and how do we recognize one?

What is the absolute path name of Sue’s asg01.c in the tree diagram in this section?
Of what is the CWD a property?

Show a Unix command that prints the CWD of a shell process.

Show a Unix command that sets the CWD of a shell process to /tmp.

Show a Unix command that sets the CWD of a shell process to our home directory?
What is a relative path name and how to we recognize one?

Is a relative path name unique? Prove your answer with an example.

How does Unix determine the absolute path name from a relative path name?

If the CWD of a process is /ust/local, what is the absolute path name of "bin/ape"?

If the CWD of a process is /ust/local, what is the relative path name of /usr/local/lib/libxtend.a?
If the CWD of a process is /ust/local, what is the relative path name of /usr/bin?

If the CWD of a process is /ust/local, what is the relative path name of /etc/motd?
Where does a new process get its initial CWD?

Why should we avoid using absolute path names in programs and scripts?

Show a Unix command that lists the contents of the parent directory of CWD.

If the CWD of a process is /home/bob/Programs, what is the relative path name of /home/bob/Data/input].txt?
How do we remove a file called "~sue" in the CWD?

What are the three user categories that can be granted permissions on a file or directory?

The Research Computing User’s Guide 81/574

32. What does it mean to set execute permission on a file? On a directory?

33. Given the following Is -1 output, who can do what to bootcamp.pdf?

—rwW—r————— 1 joe users 82118 Aug 2 09:47 bootcamp.pdf

34. How would we allow users who are not in the owning group to read bootcamp.pdf?

35. How would we allow members of the group to read and execute the program "simulation" and at the same time revoke all
access to other users?

36. Show a Unix command that makes the directory "MyScripts" world writable.
37. Show a Unix command that changes the group ownership of the directory "Research” to the group "smithlab".

38. Assuming your primary group is "joe", show a Unix command that configures the directory Research form the previous
question so that new files you create in it will be owned by "smithlab" instead of "joe"?

3.10 Unix Commands and the Shell

Before You Begin You should have a basic understanding of Unix processes, files, and directories. These topics are covered
in Section 3.8 and Section 3.9.

Unix commands fall into one of two categories:

¢ Internal commands are part of the shell.

No new process is created when you execute an internal command. The shell simply carries out the execution of internal
commands by itself.

» External commands are programs separate from the shell. The command name of an external command is actually the name of
an executable file, i.e. a file containing the program or script. For example, when you run the Is command, you are executing
the program contained in the file /bin/1s.

When you run an external command, the shell locates the program file, loads the program into memory, and creates a new
(child) process to execute the program. The shell then normally waits for the child process to end before prompting you for the
next command.

3.10.1 Internal Commands

Commands are implemented internally only when it is necessary or when there is a substantial benefit. If all commands were
part of the shell, the shell would be enormous and require too much memory.

One command that must be internal is the ed command, which changes the CWD of the shell process. The ed command cannot
be implemented as an external command, since the CWD is a property of the process, as described in Section 3.9.2.

We can prove this using Proof by Contradiction. If the cd command were external, it would run as a child process of the shell.
Hence, running cd would create a child process, which would inherit CWD from the shell process, alter its copy of CWD, and
then terminate. The CWD of the parent, the shell process, would be unaffected.

Expecting an external command to change your CWD for you would be akin to asking one of your children to go to take a shower
for you. Neither is capable of affecting the desired change. Likewise, any command that alters the state of the shell process must
be implemented as an internal command.

The Research Computing User’s Guide 82/574

3.10.2 External Commands

Most commands are external, i.e. programs separate from the shell. As a result, they behave the same way regardless of which
shell we use to run them.

The executable files containing external commands are kept in certain directories, most of which are called bin (short for
"binary", since most executable files are binary files containing machine code). The most essential commands required for the
Unix system to function are kept in /bin and /usr/bin. The location of optional add-on commands varies, but a typical
location is /usr/local/bin. Debian and Redhat Linux mix add-on commands with core system commands in /usr/bin.
BSD systems keep them separate directories such as /usr/local/binor /usr/pkg/bin.

Example 3.14 Practice Break

1. Use which under C shell family shells to find out whether the following commands are internal or external. Use type under
Bourne family shells (bash, ksh, dash, zsh). You can use either command under either shell, but will get better results if
you follow the advice above. (Try both and see what happens.)

shell-prompt: which cd
shell-prompt: which cp
shell-prompt: which exit
shell-prompt: which 1s
shell-prompt: which pwd

2. Use Is to find out what commands are located in /bin and /usr/bin.

3.10.3 Getting Help

In the dark ages before Unix, when programmers wanted to look up a command or function, they actually had to get out of their
chairs and walk somewhere to pick up a typically ring-bound printed manual to flip through. This resembled physical activity,
which most computer scientists find terrifying.

The Unix designers saw the injustice of this situation and set out to rectify it. They imagined a Utopian world where they could
sit in the same chair for ten hours straight without ever taking our eyes off the monitor or their fingers off the keyboard, happily
subsisting on coffee and potato chips.

Aside

If there is one trait that best defines an engineer it is the ability to concentrate on one subject to the complete exclusion of
everything else in the environment. This sometimes causes engineers to be pronounced dead prematurely. Some funeral
homes in high-tech areas have started checking resumes before processing the bodies. Anybody with a degree in electrical
engineering or experience in computer programming is propped up in the lounge for a few days just to see if he or she snaps
out of it.

-- The Engineer Identification Test (Anonymous)

And so, online documentation was born. On Unix systems, all common Unix commands are documented in detail on the Unix
system itself, and the documentation is accessible via the command line (you do not need a GUI to view it, which is important
when using a dumb terminal to access a remote system). Whenever you want to know more about a particular Unix command,
you can find out by typing man command-name. For example, to learn all about the Is command, type:

shell-prompt: man ls

The man covers virtually every common command, as well as other topics. It even covers itself:

shell-prompt: man man

The man command displays a nicely formatted document known as a man page. It uses a file viewing program called more,
which can be used to browse through text files very quickly. Table 3.6 shows the most common keystrokes used to navigate a
man page. For complete information on navigation, run:

The Research Computing User’s Guide 83/574

Key Action

h Show key commands
Space bar Forward one page
Enter/Return Forward one line

b Back one page

/ Search

Table 3.6: Common hot keys in more

shell-prompt: man more

Man pages include a number of standard sections, such as SYNOPSIS, DESCRIPTION, and SEE ALSO, which helps you
identify other commands that might be of use.

Man pages do not always make good tutorials. Sometimes they contain too much detail, and they are often not well-written for
novice users. If you’re learning a new command for the first time, you might want to consult a Unix book or the WEB. The man
pages will provide the most detailed and complete reference information on most commands, however.

The apropos command is used to search the man page headings for a given topic. It is equivalent to man -k. For example, to
find out what man pages exist regarding Fortran, we might try the following:

shell-prompt: apropos sine

FreeBSD moray.acadix bacon ~ 1002: apropos sine

acos, acosf, acosl(3) - arc cosine functions

acosh, acoshf, acoshl(3) - inverse hyperbolic cosine functions
asin, asinf, asinl(3) - arc sine functions

asinh, asinhf, asinhl (3) - inverse hyperbolic sine functions
cos, cosf, cosl(3) - cosine functions

cosh, coshf, coshl(3) - hyperbolic cosine functions

cospi, cospif, cospil(3) - half-cycle cosine functions
Role::Tiny(3) - Roles: a nouvelle cuisine portion size slice of Moose
sin, sinf, sinl, sincosl(3) - sine functions

sincos, sincosf, sincosl(3) - sine and cosine functions

sinh, sinhf, sinhl(3) - hyperbolic sine function

sinpi, sinpif, sinpil(3) - half-cycle sine functions

or

shell-prompt: man -k sine

The whatis is similar to apropos in that it lists short descriptions of commands. However, whatis only lists those commands
with the search string in their name or short description, whereas apropos attempts to list everything related to the string.

shell-prompt: whatis sin
sin, sinf, sinl, sincosl(3) - sine functions

The info command is an alternative to man that uses a non-graphical hypertext system instead of flat files. This allows the user
to navigate extensive documentation more efficiently. The info command has a fairly high learning curve, but it is very powerful,
and is often the best option for documentation on a given topic. Some open source software ships documentation in info format
and provides a man page (converted from the info files) that actually has less information in it.

shell-prompt: info gcc

Example 3.15 Practice Break

1. Find out how to display a ’/* after each directory name and a **’ after each executable file when running Is.

2. Use apropos to find out what Unix commands to use with bzip files.

The Research Computing User’s Guide 84 /574

3.10.4 Some Useful Unix Commands

Most Unix commands have short names which are abbreviations or acronyms for what they do. (pwd = print working directory,
cd = change directory, Is = list, ...) Unix was originally designed for people with good memories and poor typing skills. Some
of the most commonly used Unix commands are described below.

Note This section is meant to serve as a quick reference, and to inform new readers about which commands they should learn.
There is much more to know about these commands than we can cover here. For full details about any of the commands
described here, consult the man pages, info pages, or the WEB.

This section uses the same notation conventions as the Unix man pages:

* Optional arguments are shown inside [].

* The ’or’ symbol (I) between two items means one or the other.

An ellipses (...) means optionally more of the same.

* "file" means a filename is required and a directory name is not allowed. "directory" means a directory name is required, and a
filename is not allowed. "path" means either a filename or directory name is acceptable.

File and Directory Management

Note Run these commands in the exact order presented. Some depend on successful completion of previous commands.

Is lists files in CWD or a specified file or directory.

shell-prompt: 1ls [path ...]

shell-prompt: 1s # List CWD
shell-prompt: 1ls /etc # List /etc directory

mkdir creates one or more directories.

shell-prompt: mkdir [-p] path name [path name ...]

The —p flag indicates that mkdir should attempt to create any parent directories in the path that don’t already exist. If not used,
mkdir will fail unless all but the last component of the path already exist.

shell-prompt: 1s

shell-prompt: mkdir Temp

shell-prompt: 1ls # Should see Temp now
shell-prompt: mkdir Temp2/C/MPI # Should fail
shell-prompt: mkdir -p Temp2/C/MPI

shell-prompt: ls Temp2

cp copies one or more files.

shell-prompt: cp source-file destination-file
shell-prompt: cp source-file [source-file ...] destination-directory

If there is only one source filename, then destination can be either a filename or a directory.

shell-prompt: cd

shell-prompt: touch file # Create file if it doesn’t exist
shell-prompt: cp file file.bak # Make a backup copy
shell-prompt: 1ls # Should see file and file.bak

The Research Computing User’s Guide

85/574

If there are multiple source files, then destination must be a directory. If destination is a filename, and the file exists, it will be

overwritten.

shell-prompt:
shell-prompt:
shell-prompt:

cp /etc/hosts* hosts # Should fail
cp /etc/hostsx Temp # Should work if directory Temp exists
ls Temp

myv moves or renames files or directories.

shell-prompt:
shell-prompt:

shell-prompt:
shell-prompt:

mv source destination
mv source [source ...] destination-directory

mv file.bak file.bk
1s

If multiple sources are given, destination must be a directory.

shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:

mv file file.bk file2 # Should fail

mv file file.bk Temp # Should work if directory Temp exists
1s

ls Temp

rm removes one or more files.

shell-prompt:

shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:

rm file [file ...]

cd Temp
1s

rm hostsx
1s

rm filex
1ls

@ Caution Removing files with rm is not like dragging them to the trash. Once files are removed by rm, they cannot be
recovered.

If there are multiple hard links to a file, removing one of them only removes the link, and remaining links are still valid.

Caution Removing the path name to which a symbolic link points will render the symbolic link invalid. It will become a
dangling link.

srm (secure rm) removes files securely, erasing the file content and directory entry so that the file cannot be recovered. Use this
to remove files that contain sensitive data. This is not a standard Unix command, but a free program that can be easily installed
on most systems via a package manager.

df shows the free disk space on all currently mounted partitions.

shell-prompt:

df

In link files or directories.

shell-prompt:
shell-prompt:

1ln source-file destination-file
1ln -s source destination

The Research Computing User’s Guide 86 /574

The In command creates another path name for the same file. Both names refer to the same file, so changes made through one
name (e.g. using nano) appear in the other.

Each file in a typical Unix file system is described by a structure called an inode. The inode contains metadata, i.e. information
about the file other than its content, such as the file’s ownership, permissions, last modification time, and the locations of the disk
blocks (chunks of disk space) containing the file’s content.

Without -s, a standard directory entry, known as a hard link is created. A hard link is a directory entry that points directly to the
inode of the file. In fact, such a directory entry contains little more than the file’s name and the location of the inode. Every file
must have at least one hard link to it. For this reason, removing a file is also known as "unlinking".

shell-prompt: touch file
shell-prompt: 1n file file.hardlink
shell-prompt: 1ls -1

To create a second hard link, the source cannot be a directory, and the source and destination path names must be in the same file
system. There is no harm in trying to create a hard link. If it fails, you can do a soft link instead.

shell-prompt: 1ln /etc . # Should fail

shell-prompt: 1n -s /etc

shell-prompt: 1s

shell-prompt: 1ls etc # List the link

shell-prompt: 1ls etc/ # List contents of the directory

File systems under Windows appear as different drive letters, such as C: or D:. Under Unix, each file system is mounted to a
specific directory. The main file system is mounted to / and the rest are mounted to subdirectories. The df command will list
file systems and their mount points within the directory tree. For example, in the df output below, / and /data are separate file
systems. The disk ada0 is divided into three partitions. Partition 2, called adaOp2, contains a file system which is mounted on
/. Partitions 0 and 1 are used by the operating system for other purposes. The second disk, adal, has a file system on partition
0, which is mounted on /data.

shell-prompt: df

Filesystem Size Used Avail Capacity Mounted on
/dev/adalp2 447G 266G 146G 64% /
/dev/adalp0 978G 172G 729G 20% /data

Everything under /data and only things under /data are on adalp0. Hence, we cannot create a hard line to /data/joe/
Research/notes.txt in /home/ joe, which is on adalp2.

This will fail.

You cannot run this command, since the partitions are hypothetical
You can try linking something from a different filesystem based on
your own "df" output if you like.

shell-prompt: 1ln /data/joe/Research/notes.txt ~joe

With -s, a symbolic link, or soft link is created. A symbolic link is not a standard directory entry, but a pointer to another path
name. It is a directory entry that points to another directory entry rather than the inode of the file. Symbolic links to not have to
be in the same file system as the source.

This will work
shell-prompt: ln -s /data/joe/Research/notes.txt ~joe

rmdir removes one or more empty directories.

shell-prompt: rmdir directory [directory ...]

rmdir will fail if a directory is not completely empty. You may also need to check for hidden files using Is -a directory. To
remove a directory and everything under it, use rm -r directory.

shell-prompt: cd
shell-prompt: rmdir Temp2 # Should fail
shell-prompt: rmdir Temp2/C

The Research Computing User’s Guide

87 /574

shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:

rmdir
rm —-r
rmdir
rm —-r
1s

Temp2/C/MPI

Temp?2

Temp # Should tail
Temp

du reports the disk usage of a directory and everything under it.

shell-prompt:

du [-s] [-h] path

The —s (summary) flag suppresses output about each file in the subtree, so that only the total disk usage of the directory is shown.

The -h asks for human-readable output with gigabytes followed by a G, megabytes by an M, etc.

shell-prompt:

du -sh /etc

Note

The du command does not add up file content sizes. It adds up the disk space used by each file. In an uncompressed file
system, space used is rounded up to a multiple of the block size (commonly 4096 bytes). In a compressed file system, space
used is a multiple of blocks used after compression, which can be significantly smaller than the file content. This is often the
case with the ZFS file system, which is standard on FreeBSD and Solaris-based systems such as Openlindiana. "Fluffy" text
files that compress easily, such as genomic data, may require only a small fraction of their content size in disk space on ZFS.
This make ZFS a great choice for housing genomic data.

Shell Internal Commands

As mentioned previously, internal commands are part of the shell, and serve to control the shell itself. Below are some of the
most common internal commands.

cd changes the current working directory of the shell process.

shell-prompt:

pushd changes CWD and saves the old CWD on a stack so that we can easily return.

shell-prompt:

cd [directory]

pushd

directory

Users often encounter the need to temporarily go to another directory, run a few commands, and then come back to the current

directory.

The pushd command is a very useful alternative to cd that helps in this situation. It performs the same operation as ed, but it
records the starting CWD by adding it to the top of a stack of CWDs. You can then return to where the last pushd command
was invoked using popd. This saves you from having to retype the path name of the directory to which you want to return. This
is like leaving a trail of bread crumbs in the woods to retrace your path back home, except the pushd stack will not get eaten by
birds and squirrels, and you won’t end up in a witch’s soup pot.

Example 3.16 Practice Break

Try the following sequence of commands:

shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:
shell-prompt:

pwd
pushd

Check starting point
/etc

more hosts

pushd
1s
popd
pwd

/home

Back to /etc

more hosts

popd
pwd

Back to starting point

The Research Computing User’s Guide 88 /574

exit terminates the shell process.

shell-prompt: exit

This is the most reliable way to exit a shell. In some situations you could also type logout or simply press Ctrl+d, which sends
an EOT character (end of transmission, ASCII/ISO character 4) to the shell.

Simple Text File Processing

cat echoes the contents of one or more text files.

shell-prompt: cat file [file ...]
shell-prompt: cat /etc/hosts

The vis and cat -v commands display invisible characters in a visible way. For example, carriage return characters present
in Windows files are normally not shown by most Unix commands. The vis and cat -v commands will show them as "M’
(representing Control+M, which is what you would type to produce this character).

shell-prompt: cat sample.txt

This line contains a carriage return.
shell-prompt: vis sample.txt

This line contains a carriage return.\"M
shell-prompt: cat -v sample.txt

This line contains a carriage return.”M

head shows the top N lines of one or more text files.

shell-prompt: head -n # file [file ...]

If the flag -n followed by an integer number N is given, the top N lines are shown instead of the default of 10.

shell-prompt: head -n 5 /etc/hosts

The head command can also be useful for generating small test inputs. Suppose you’re developing a new program or script that
processes genomic sequence files in FASTA format. Real FASTA files can contain millions of sequences and take a great deal of
time to process. For testing new code, we don’t need much data, and we want the test to complete in a few seconds rather than
hours. We can use head to extract a small number of sequences from a large FASTA file for quick testing. Since FASTA files
have alternating header and sequence lines, we must always choose a multiple of 2 lines. We use the output redirection operator
(>) to send the head output to a file instead of the terminal screen. Redirection is covered in Section 3.13.

You cannot run this command unless you have a file called
reall-big.fasta in the CWD
shell-prompt: head -n 1000 really-big.fasta > small-test.fasta

tail shows the bottom N lines of one or more text files.

shell-prompt: tail -n # file [file ...]

Tail is especially useful for viewing the end of a large file that would be cumbersome to view with more.
If the flag -n followed by an integer number N is given, the bottom N lines are shown instead of the default of 10.

shell-prompt: tail -n 5 /etc/hosts

The diff command shows the differences between two text files. This is most useful for comparing two versions of the same file
to see what has changed. Also see cdiff, a specialized version of diff, for comparing C source code.

The —u flag asks for unified diff output, which shows the removed text (text in the first file by not the second) preceded by ’-’,
the added text (text in the second file but not the first) preceded by a ’+’, and some unchanged lines for context. Most people find
this easier to read than the default output format.

The Research Computing User’s Guide 89/574

shell-prompt: printf "1\n2\n3\n" > inputl.txt
shell-prompt: printf "2\n3\n4\n" > input2.txt
shell-prompt: diff inputl.txt input2.txt
shell-prompt: diff -u inputl.txt input2.txt
shell-prompt: rm inputl.txt input2.txt

Text Editors

There are more text editors available for Unix systems than any one person is aware of. Some are terminal-based, some are
graphical, and some have both types of interfaces.

All Unix systems support running graphical programs from remote locations, but many graphical programs require a fast con-
nection (100 megabits/sec) or more to function comfortably.

Knowing how to use a terminal-based text editor is therefore a very good idea, so that you’re prepared to work on a remote Unix
system over a slow connection if necessary. Some of the more common terminal-based editors are described below.

vi (visual editor) is the standard text editor for all Unix systems. Most users either love or hate the vi interface, but it’s a good
editor to know since it is available on every Unix system.

nano is an extremely simplistic text editor that is ideal for beginners. It is a rewrite of the pico editor, which is known to have
many bugs and security issues. Neither editor is standard on Unix systems, but both are free and easy to install. These editors
entail little or no learning curve, but are not sophisticated enough for extensive programming or scripting.

emacs (Edit MACroS) is a more sophisticated editor used by many programmers. It is known for being hard to learn, but very
powerful. It is not standard on most Unix systems, but is free and easy to install.

ape is a menu-driven, user-friendly IDE (integrated development environment), i.e. programmer’s editor. It has an interface
similar to PC and Mac programs, but works on a standard Unix terminal. It is not standard on most Unix systems, but is free and
easy to install. ape has a small learning curve, and advanced features to make programming much faster.

Eclipse is a popular open-source graphical IDE written in Java, with support for many languages. It is sluggish over a slow
connection, so it may not work well on remote systems over ssh.

Networking

hostname prints the network name of the machine.

shell-prompt: hostname

This is often useful when you are working on multiple Unix machines at the same time (e.g. via ssh), and forgot which window
applies to each machine.

Identity and Access Management

passwd changes your password. It asks for your old password once, and the new one twice (to ensure that you don’t accidentally
set your password to something you don’t know because your finger slipped). Unlike many graphical password programs,
passwd does not echo anything for each character typed. Even allowing someone to see the length of your password is a bad
idea from a security standpoint.

This may not work on systems using an authentication service
rather than local passwords
shell-prompt: passwd

The passwd command is generally only used for setting local passwords on the Unix machine itself. Many Unix systems are
configured to authenticate users via a remote service such as Lightweight Directory Access Protocol (LDAP) or Active Directory
(AD). Changing LDAP or AD passwords may require using a web portal to the LDAP or AD server instead of the passwd
command.

The Research Computing User’s Guide 90/574

Terminal Control

clear clears your terminal screen (assuming the TERM environment variable is properly set).

shell-prompt: clear

reset resets your terminal to its default state. This is useful when your terminal has been corrupted by bad output, such as when
attempting to view a binary file with cat.

Terminals are controlled by magic sequences, sequences of invisible control characters sent from the host computer to the terminal
amid the normal output. Magic sequences move the cursor, change the color, change the international character set, etc. Binary
files contain random data that sometimes by chance contain magic sequences that could alter the mode of your terminal. If this
happens, running reset will usually correct the problem. If not, you will need to log out and log back in.

shell-prompt: reset

Table 3.7 provides a quick reference for looking up common Unix commands. For details on any of these commands, run man
command (or info command on some systems).

Synopsis Description

Is [fileldirectory] List file(s)

cp source-file destination-file Copy a file

cp source-file [source-file ...] directory Copy multiple files to a directory
mv source-file destination-file Rename a file

mv source-file [source-file ...] directory Move multiple files to a directory

Create another name for the same file. (source and
destination must be in the same file system)
In -s source destination Create a symbolic link to a file or directory

In source-file destination-file

rm file [file ...]

Remove one or more files

rm -r directory

Recursively remove a directory and all of its contents

mkdir directory

Create a directory

rmdir directory

Remove a directory (the directory must be empty)

od/hexdump Show the contents of a file in octal/hexadecimal
sort Sort text files based on flexible criteria

uniq Echo files, eliminating adjacent duplicate lines.
diff Show differences between text files.

cmp Detect differences between binary files.

cdiff Show differences between C programs.

date Show the current date and time.

cal Print a calendar for any month of any year.
printenv Print environment variables.

Table 3.7: Unix Commands

3.10.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What types of commands have to be internal to the shell? Give one example and explain why it must be internal.
How can you find a list of the basic Unix commands available on your system?

How can you find out whether the grep command is internal or external, and where it is located?

bl

What kind of suffering did computer users have to endure in order to read documentation before the Unix renaissance?
How did Unix put an end to such suffering?

The Research Computing User’s Guide 91/574

N o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

3.11

Show a Unix command that helps us learn about all the command-line flags available for the tail command.
Show a Unix command that copies the file /tmp/sample.txt to the CWD.
Show a Unix command that copies all files in /tmp whose names begin with "sample" and end with ".txt" to the CWD.

Show a Unix command that moves all the files in the CWD whose names end with ".py" to a subdirectory of the CWD
called "Python".

Show a Unix command that creates another file name in the CWD called test-input.txt for the existing file ./Data/input.txt.
What is a hard link?

What is a symbolic link?

What do we get when we remove the path name to which a symbolic link points?

What limitations do hard links have that soft links do not have?

How do we create a new directory /home/joe/Data/Projectl if the Data directory does not exist and the CWD is /home/joe?
How do we remove the directory ./Data if it is empty? If it is not empty?

Show a Unix command that tells us how much disk space is available in each file system.

Show a Unix command that tells us how much space is used by the directory ./Data.

Show a sequence of Unix commands that change CWD to /tmp, then to /etc and then return to the original CWD.
How do we exit the shell?

Show a Unix command that tells us if there are carriage returns in graph.py.

Show a Unix command that displays the first 20 lines of output.txt.

Show a Unix command that displays the last 20 lines of output.txt.

Show a Unix command that displays what has changed between analysis.c.old and analysis.c.

Which text editor is available on all Unix systems?

Show a Unix command that tells us the name of the machine running our shell.

Show a Unix command to the remote server unixdevl.ceas.uwm.edu as user joe in order to run commands on it.
Show a Unix command to change our local password.

How do we change our password for a Unix system that relies on LDAP or AD?

Show a Unix command that clears the terminal display.

Show a Unix command to reset the terminal mode to default settings.

POSIX and Extensions

Unix-compatible systems generally conform to standards published by the International Organization for Standardization (ISO),
the Open Group, and the IEEE Computer Society.

The primary standard used for this purpose is POSIX, the Portable Operating System standard based on UnIX. Programs and
commands that conform to the POSIX standard will work on any Unix system. Therefore, developing your programs and scripts
according to POSIX will prevent the need for even minor changes when porting from one Unix variant to another.

Nevertheless, many common Unix programs have been enhanced beyond the POSIX standard to provide conveniences. Fortu-
nately, most such programs are open source and can therefore be easily installed on most Unix systems. Features that do not

The Research Computing User’s Guide 92/574

conform to the POSIX standard are known as extensions. Extensions are often described according to their source, e.g. BSD
extensions that come from BSD Unix variants or GNU extensions that come from the GNU software project.

Many standard commands such as awk, make, and sed, may contain extensions that depend on the specific operating system. For
example, BSD systems use the BSD versions of awk, make, and sed, which contain BSD extensions, while GNU/Linux systems
use the GNU versions of awk, make, and sed, which contain GNU extensions.

When installing GNU software on BSD systems, the GNU version of the command is usually prefixed with a ’g’, to distinguish
it from the native BSD command. For example, on FreeBSD, "make" and "awk" are the BSD implementations and "gmake" and
"gawk" would be the GNU implementations. Likewise, on GNU/Linux systems, BSD commands would generally be prefixed
with a ’b” or "bsd’. The "make" and "tar" commands on GNU/Linux would refer to GNU versions and the BSD versions would
be "bmake" and "bsdtar".

All of them will support POSIX features, so if you use only POSIX features, they will behave the same way. If you use GNU or
other extensions, you should use the GNU command, e.g. gawk instead of awk.

Program Example of extensions

BSD Tar Support for extracting ISO and Apple DMG files

GNU Make Various "shortcut" rules for compiling multiple source files
GNU Awk Additional built-in functions

Table 3.8: Common Extensions

3.11.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is POSIX and why is it important?
2. What is an extension?

3. Does the use of extensions always prevent things from working on other Unix systems?

3.12 Subshells

Commands placed between parentheses are executed in a new child shell process rather than the shell process that received the
commands as input.

This can be useful if you want a command to run in a different directory or with other alterations to its environment, without
affecting the current shell process.

shell-prompt: (cd /etc; 1s)

Since the commands above are executed in a new shell process, the shell process that printed "shell-prompt: " will not have its
current working directory changed. This command has the same net effect as the following:

shell-prompt: pushd /etc
shell-prompt: 1s
shell-prompt: popd

3.12.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Show a single Unix command that runs pwd and produces the output "/etc", without changing the CWD of the shell
process.

The Research Computing User’s Guide 93/574

3.13 Redirection and Pipes

3.13.1 Device Independence

Many operating systems that came before Unix treated each input or output device differently. Each time a new device became
available, programs would have to be modified in order to access it. This is intuitive, since the devices all look different and
perform different functions.

The Unix designers realized that this is actually unnecessary and a waste of programming effort, so they developed the concept
of device independence. What this means is that Unix treats virtually every input and output device exactly like an ordinary file.
All input and output, whether to/from a file on a disk, a keyboard, a mouse, a scanner, or a printer, is simply a stream of bytes to
be input or output using the same tools.

Most I/0 devices are actually accessible as a device file in /dev. For example, the primary CD-ROM might be /dev/cd0, the
main disk /dev/ado, the keyboard /dev/kbd0, and the mouse /dev/sysmouse.

A user with sufficient permissions can view input coming from these devices using the same Unix commands we use to view a
file:

shell-prompt: cat /dev/kbdO0
shell-prompt: more /dev/cdO

In fact, data are often recovered from corrupted file systems or accidentally deleted files by searching the raw disk partition as a
file using standard Unix commands such as grep!

shell-prompt: grep string /dev/adOslf

A keyboard sends text data, so /dev/kbdO0 is like a text file. Many other devices send binary data, so using cat to view them
would output gibberish. To see the raw input from a mouse as it is being moved, we could instead use hexdump, which displays
the bytes of input as numbers rather than characters:

shell-prompt: hexdump /dev/sysmouse

Some years ago while mentoring my son’s robotics team, as part of a side project, I reverse-engineered a USB game pad so I
could control a Lego robot via Bluetooth from a laptop. Thanks to device-independence, no special software was needed to figure
out the game pad’s communication protocol.

£F=

After plugging the game pad into my FreeBSD laptop, the system creates a new UHID (USB Human Interface Device) under
/dev. The dmesg command shows the name of the new device file:

ugenl.2: <vendor 0x046d product 0Oxc216> at usbusl
uhid0 on uhub3
uhid0: <vendor 0x046d product Oxc216, class 0/0, rev 1.10/3.00, addr 2> on usbusl

One can then view the input from the game pad using hexdump:

The Research Computing User’s Guide 94 /574

FreeBSD manatee.acadix Dbacon ~ 410: hexdump /dev/uhid0
0000000 807f 7d80 0008 fc04 807f 7b80 0008 fc04
0000010 807f 7780 0008 £c04 807f 6780 0008 £fc04
0000020 807f 5080 0008 fc04 807f 3080 0008 fc04
0000030 807f 0d80 0008 fc04 807f 0080 0008 fc04
0000060 807f 005e 0008 £fc04 807f 005d 0008 £fc04
0000070 807f 0060 0008 fc04 807f 0063 0008 fc04
0000080 807f 006c 0008 fc04 807f 0075 0008 fc04
0000090 807f 0476 0008 £c04 807f 1978 0008 £fc04
00000a0 807f 4078 0008 fc04 807f 8c7f 0008 fc04
00000b0O 807f 807f 0008 fc04 807f 7f7f 0008 fc04
00000cO 807f 827f 0008 £c04 807f 847f 0008 fc04
00000d0 807f 897f 0008 £fc04 807f 967f 0008 fc04
00000e0 807f a77f 0008 fc04 807f be80 0008 fc04
00000£0 807f d980 0008 £fc04 807f £780 0008 £fc04
0000100 807f ££80 0008 fc04 807f f££83 0008 fc04
0000110 807f f£f8f 0008 fc04 807f f££93 0008 fc04

To understand these numbers, we need to know a little about hexadecimal, base 16. This is covered in detail in Chapter 14. In
short, it works the same as decimal, but we multiply by powers of 16 rather than 10, and digits go up to 15 rather than 9. Digits
for 10 through 15 are A, B, C, D, E, and F. The largest possible 4-digit number is therefore FFFF_16. 8000_16 is in the middle
of the range.

0000_16 = 0 = 1673 + 0 % 1672 + 0 % 1671 + 0 x 1670 = 0_10
8000_16 = 8 x 167”3 + 0 * 16”2 + 0 % 1671 + 0 x 1670 = 32,678_10
FFFF_16 = 15 % 1673 + 15 % 1672 + 15 x 1671 + 15 * 16”0 = 65,535_10

It was easy to see that moving the right joystick up resulted in lower numbers in the 3rd and 7th columns, while moving down
increased the values. Center position sends a value around 8000 (hexadecimal), fully up is around 0, fully down is ffff.

It was then easy to write a small program to read the joystick position from the game pad (by simply opening /dev/uhid0 like
any other file) and send commands over Bluetooth to the robot, adjusting motor speeds accordingly. The Bluetooth interface is
simply treated as an output file.

3.13.2 Redirection

Since I/0 devices and files are interchangeable, Unix shells can provide a facility called redirection to easily interchange them
for any process without the process even knowing it.

Redirection depends on the notion of a file stream. You can think of a file stream as a hose connecting a program to a particular
file or device, as shown in Figure 3.3. Redirection simply disconnects the hose from the default file or device (such as the
keyboard or terminal screen) and connects it to another file or device chosen by the user.

Input device Input stream | ——» Process Output stream Output di\i'i/

Figure 3.3: File streams

Every Unix process has three standard streams that are open from the moment the process is born. The standard streams for a
shell process are normally connected to the terminal, as shown in Table 3.9 and Figure 3.4.

The Research Computing User’s Guide

95/574

Stream Purpose Default Connection
Standard Input User input Terminal keyboard
Standard Output Normal output Terminal screen
Standard Error Errors and warnings Terminal screen

Table 3.9: Standard Streams

Terminal

Process —7/ Standard output
47/ Standard error

Figure 3.4: Standard streams

Keyboard y Standard input

Redirection in the shell allows any or all of the three standard streams to be disconnected from the terminal and connected to
a file or other I/O device. It uses special operator characters within the commands to indicate which stream(s) to redirect and
where. The basic redirection operators shells are shown in Table 3.10.

Operator Shells Redirection type

< All Standard Input

> All Standard Output (overwrite)

>> All Standard Output (append)

2> Bourne-based Standard Error (overwrite)

2>> Bourne-based Standard Error (append)

S& C shell-based Standarq Output and Standard Error
(overwrite)

So& C shell-based Standard Output and Standard Error
(append)

Table 3.10: Redirection Operators

Note Memory trick: A redirection operator is an arrow that points in the direction of data flow.

Overwrite with listing of
Append listing of /etc

shell-prompt: 1ls > listing.txt
shell-prompt: ls /etc >> listing.txt

In the examples above, the Is process sends its output to 1isting. txt instead of the terminal, as shown in Figure 3.5.

Terminal

Standard input Process

—7/ Standard output
47/ Standard error

Figure 3.5: Redirecting standard output

Keyboard

However, the filename 1isting.txt is not an argument to the Is process. The Is process never even knows about this output
file. The redirection is handled by the shell and the shell removes "> listing.txt" and ">> listing.txt" from these commands before

The Research Computing User’s Guide 96 /574

executing them. So, the first Is receives no arguments, and the second receives only /et c. Most programs have no idea whether
their output is going to a file, a terminal, or some other device. They don’t need to know and they don’t care.

Caution

Using output redirection (>, 2>, or >&) in a command will normally overwrite (clobber) the file that you're redirecting to,
even if the command itself fails. Be very careful not to use output redirection accidentally. This most commonly occurs
when a careless user meant to use input redirection, but pressed the wrong key.

The moment you press Enter after typing a command containing "> filename", filename will be erased! Remember that
the shell performs redirection, not the command, so filename is clobbered before the command is even executed.

If noclobber is set for the shell, output redirection to a file that already exists will result in an error. The noclobber
option can be overridden by appending a ! to the redirection operator in C shell derivatives or a | in Bourne shell
derivatives. For example, >! can be used to force overwriting a file in csh or tcsh, and >| can be used in sh, ksh, or
bash.

More often than not, we want to redirect both normal output and error messages to the same place. This is why C shell and its
derivatives use a combined operator that redirects both at once.

shell-prompt: find /etc >& all-output.txt

The same effect can be achieved with Bourne-shell derivatives using another operator that redirects one stream to another stream.
In particular, we redirect the standard output (stream 1) to a file (or device) and at the same time redirect the standard error
(stream 2) to stream 1.

shell-prompt: find /etc > all-output.txt 2>&l

In Bourne family shells, we can separately redirect the standard output with > and the standard error with 2>:

shell-prompt: find /etc > list.txt 2> errors.txt

If we want to separate standard output and standard error in a C shell or T shell session, we can use a subshell under which the
find command redirects only the standard output. The output from the subshell process will then only contain the standard error
left over from find, which we can redirect with &>:

shell-prompt: (find /etc > list.txt) >& errors.txt

If a program takes input from the standard input, we can redirect input from a file as follows:

shell-prompt: command < input-file

For example, the "bc" (binary calculator) command is an arbitrary-precision calculator that inputs numerical expressions from
the standard input and writes the results to the standard output. It’s a good idea to use the ——mathlib flag with be for more
complete functionality.

shell-prompt: bc --mathlib
3.14159265359 * 4.2 ~ 2 + sqrt(30)
60.89491440932

quit

In the example above, the user entered "3.14159265359 * 4.2 " 2 + sqrt(30)" and "quit" and the bc program output "60.89491440932".
We could instead place the input shown above in a file using any text editor, such as nano or vi, or even using cat with keyboard
input and output redirection as a primitive editor:

shell-prompt: cat > bc-input.txt

3.14159265359 * 4.2 ~ 2 + sqrt(30)

quit

(Type Ctrl+d to signal the end of input to the cat process)
shell-prompt: cat bc—input.txt

3.14159265359 * 4.2 ~ 2 + sqrt(30)

quit

The Research Computing User’s Guide 97 /574

Now that we have the input in a file, we can feed it to the be process using input redirection instead of retyping it on the keyboard:

shell-prompt: bc —-—-mathlib < bc-input.txt
60.29203070318

3.13.3 Special Files in /dev

The standard streams themselves are represented as device files on Unix systems. This allows us to redirect one stream to
another without modifying a program, by appending the stream to one of the device files /dev/stdout or /dev/stderr.
For example, if a program sends output to the standard output and we want to send it instead to the standard error, we could do
something like the following:

shell-prompt: printf "Oops!" >> /dev/stderr

If we would like to simply discard output sent to the standard output or standard error, we can redirect it to /dev/null. For
example, to see only error messages (standard error) from myprog, we could do the following:

shell-prompt: ./myprog > /dev/null

To see only normal output and not error messages, assuming Bourne shell family:

shell-prompt: ./myprog 2> /dev/null

In C shell family:

shell-prompt: (find /etc > output.txt) >& /dev/null ; cat output.txt

The device /dev/zero is a readable file that produces a stream of zero bytes.

The device /dev/random is a readable file that produces a stream of random integers in binary format. We can use the dd
command, a bit copy program, to copy a fixed number of bytes from one file to another. We specify the input file with "if=",
output with "of=", block size with "bs=", and the number of blocks with "count=". Total data copied will be block-size * count.

shell-prompt: dd if=/dev/random of=random-data bs=1000000 count=10

Note The block size indicates the size of the memory buffer used to store each chunk of the file. Make it large enough to keep
the number of disk reads/writes low, but not so large that it will use a significant portion of available memory. A block size of a
gigabyte may stress the system’s memory resources, and you won’t see much improvement in speed using block sizes more
than several kibibytes.

3.13.4 Pipes

Very often, we want to use the output of one program as input to another. Such a thing could be done using redirection, as shown
below:

shell-prompt: 1ls > listing.txt
shell-prompt: more listing.txt

The same task can be accomplished in one command using a pipe. A pipe redirects one of the standard streams, just as redirection
does, but to or from another process instead of a file or device. In other words, we can use a pipe to send the standard output
and/or standard error of one process directly to the standard input of another process.

A pipe is constructed by placing the pipe operator () between two commands. The whole chain of commands connected by pipes
is called a pipeline.

The Research Computing User’s Guide 98 /574

Example 3.17 Simple Pipe
The command below uses a pipe to redirect the standard output of an Is process directly to the standard input of a more process.

shell-prompt: 1ls | more

Since a pipe runs multiple processes in the same shell, it is necessary to understand the concept of foreground and background
processes, which are covered in detail in Section 3.18.

Multiple processes can output to a terminal at the same time, although the results would obviously be chaos in most cases.

In contrast to output, only one process can be receiving input from the keyboard, however. It would be a remarkable coincidence
if the same input made sense to two different programs.

The foreground process running under a given shell process is defined as the process that receives the input from the terminal.
This is the only difference between a foreground process and a background process.

When running a pipeline command, the /ast command in the pipeline becomes the foreground process. All others run in the
background, i.e. do not use the standard input device inherited from the shell process. Hence, when we run:

shell-prompt: 1ls | more

It is the more command that receives input from the keyboard. The more command has its standard input redirected from the
standard output of s, and the standard input of the Is command is effectively disabled.

Note The more command is somewhat special: Since its standard input is used to receive input from the pipe, it opens another
stream to connect to the keyboard so that it can still get user input, such as pressing the space bar for another screen, etc.

This is such a common practice that Unix has defined the term filter to apply to programs that can be used in this way. A filter is
any command that can receive input from the standard input and send output to the standard output. Many Unix commands are
designed to accept a file name as an argument, but to use the standard input and/or standard output if no filename arguments are
provided.

Example 3.18 Filters
The more command is commonly used as a filter. It can read a file whose name is provided as an argument, but will use the
standard input if no argument is provided. Hence, the following two commands have the same effect:

shell-prompt: more names.txt
shell-prompt: more < names.txt

The only difference between these two commands is that in the first, the more process receives names . txt as a command line
argument, opens the file itself (creating a new file stream), and reads from the new stream (not the standard input stream). In
the second instance, the shell process opens names . t xt and connects the standard input stream of the more process to it. The
more process then uses another stream to read user input from the keyboard.

Using the filtering capability of more, we can paginate the output of any command:

shell-prompt: 1ls | more
shell-prompt: find . -name ’'*.c’ | more
shell-prompt: sort names.txt | more

We can string any number of commands together using pipes. The only limitations are imposed by the memory requirements of
the processes in the pipeline. For example, the following pipeline sorts the names in names.txt, removes duplicates, filters out all
names not beginning with *B’, and shows the first 100 results one page at a time.

shell-prompt: sort names.txt | unig | grep ’"”B’ | head -n 100 | more

To see lines 101 through 200 of a file output.txt:

shell-prompt: head -n 200 output.txt | tail -n 100

The Research Computing User’s Guide 99/574

One more useful tool worth mentioning is the tee command. The tee command is a simple program that reads from its standard
input and writes to both the standard output and to one or more files whose names are provided on the command line. This allows
you to view the output of a program on the screen and save it to a file at the same time.

shell-prompt: 1ls | tee listing.txt

Recall that Bourne-shell derivatives do not have combined operators for redirecting standard output and standard error at the
same time. Instead, we redirect the standard output to a file or device, and redirect the standard error to the standard output using
2>&1.

We can use the same technique with a pipe, but there is one more condition: For technical reasons, the 2>&1 must come before
the pipe.

shell-prompt: ls | tee listing.txt 2>&1 # Won’t work
shell-prompt: 1ls 2>&1 | tee listing.txt # Will work

The yes command (much like Jim Carrey in "Yes Man") produces a stream of y’s followed by newlines. It is meant to be piped
into a program that prompts for y’s or n’s in response to yes/no questions, so that the program will receive a yes answer to all of
its prompts and run without user input.

shell-prompt: yes | ./myprog
The yes command can actually print any response we want, via a command line argument. To answer ’n’ to every prompt, we
could do the following:

shell-prompt: yes n | ./myprog

In cases where the response isn’t always the same, we can feed a program a arbitrary sequence of responses using redirection or
pipes. Be sure to add a newline (\n) after each response to simulate pressing the Enter key:

shell-prompt: printf "y\nn\ny\n" | ./myprog

Or, to save the responses to a file for repeated use:

shell-prompt: printf "y\nn\ny\n" > responses.txt
shell-prompt: ./myprog < responses.txt

3.13.5 Misusing Pipes

Aside
It’'s important to learn from the mistakes of others, because we don’t have time to make them all ourselves.

Users who don’t fully understand Unix and processes often fall into bad habits that can potentially be costly. There are far too
many such habits to cover here: One could write a separate 1,000-page volume called "Favorite Bad Habits of Unix Users". As
a less painful alternative, we’ll explore one common bad habit in detail and try to help you understand how to spot others. Our
feature habit of the day is the use of the cat command at the head of a pipeline:

shell-prompt: cat names.txt | sort | unig > outfile

So what’s the alternative, what’s wrong with using cat this way, what’s the big deal, why do people do it, and how do we know
it’s a problem?

1. The alternative:

Most commands used downstream of cat in situations like this (e.g. sort, grep, more, etc.) are capable of reading a file
directly if given the filename as an argument:

The Research Computing User’s Guide 100/574

shell-prompt: sort names.txt | unig > outfile

Even if they don’t take a filename argument, we can always use simple redirection instead of a pipe:

shell-prompt: sort < names.txt | unig > outfile

2. The problem:

» Using cat this way just adds overhead in exchange for no benefit. Pipes are helpful when you have to perform multiple
processing steps in sequence. By running multiple processes at the same time instead of one after the other, we can
improve resource utilization. For example, while sort is waiting for disk input, uniq can use the CPU. Better yet, on a
computer with multiple cores, the processes can utilize two cores at the same time.

However, the cat command doesn’t do any processing at all. It just reads the file and feeds the bytes into the first pipe.
In using cat this way, here’s what happens:

(a) The cat command reads blocks from the file into a file input buffer.

(b) It then copies the input buffer, one byte at a time, to its standard output buffer, without processing the data in any
way. It just senselessly moves data (through a proverbial straw) from one memory buffer to another.

(c) When the standard output buffer is full, it is copied to the pipe, which is yet another memory buffer.

(d) Characters in the pipe buffer are copied to the standard input buffer of the next command (e.g. sort).

(e) The sort can finally begin processing the data.

This is like pouring a drink into a glass, then moving it to a second glass using an eye dropper, then pouring it into a
third glass and finally a fourth glass before actually drinking it.

It’s much simpler and less wasteful for the sort command to read directly from the file.

» Using a pipe this way also prevents the downstream command from optimizing disk access. A program such as sort
might use a larger input buffer size to reduce the number of disk reads. Reading fewer, larger blocks from disk can
keep the latency incurred for each disk operation from adding up, thereby reducing run time. This is not possible when
reading from a pipe, which is a fixed-size memory buffer.

3. What'’s the big deal?

Usually, this is not much of a problem. Wasting a few seconds or minutes on your laptop won’t hurt anyone. However,
sometimes mistakes like this one are incorporated into HPC cluster jobs using hundreds of cores for weeks at a time. In
that case, it could increase run time by several days, delaying the work of other users who have jobs waiting in the queue,
as well as your own. Not to mention, the wasted electricity could cost the organization hundreds of dollars and create
additional pollution.

4. Why do people do things like this?

By far the most common response I get when asking people about this sort of thing is: "[Shrug] I copied this from an
example on the web. Didn’t really think about it."

Occasionally, someone might think they are being clever by doing this. They believe that this speeds up processing by
splitting the task into two processes, hence utilizing multiple cores, one running cat to handle the disk input and another
dedicated to sort or whatever command is downstream. However, this strategy only helps if both processes are CPU-bound,
i.e. they spend more time using the CPU than performing input and output. This is not the case for the cat command.

One might also think it helps by overlapping disk input and CPU processing, i.e. cat can read the next block of data while
sort is processing the current one. This may have worked a long time ago using slow disks and unsophisticated operating
systems, but it only backfires with modern disks and modern Unix systems that have sophisticated disk buffering.

In reality, this strategy only increases the amount of CPU time used, and almost always increases run time.

5. Detection:

Detecting performance issues is pretty easy. The most common tool is the time command.

shell-prompt: time fgrep GGTAGGTGAGGGGCGCCTCTAGATCGGAAGAGCACACGTCTGAACTCCAGTCA test.vcf <
> /dev/null
2.539u 6.348s 0:09.86 89.9% 92+173k 35519+0io Opf+0w

The Research Computing User’s Guide

101/574

We have to be careful when using time with a pipeline, however. Depending on the shell and the time command used
(some shells have in internal implementation), it may not work as expected. We can ensure proper function by wrapping
the pipeline in a separate shell process, which is then timed:

shell-prompt: time sh -c "cat test.vcf | fgrep <«
GGTAGGTGAGGGGCGCCTCTAGATCGGAAGAGCACACGTCTGAACTCCAGTCA > /dev/null"
2.873u 17.008s 0:13.68 145.2% 33+155k 33317+0io Opf+0w

Table 3.11 compares the run times (wall time) and CPU time of the direct fgrep and piped fgrep shown above three
different operating systems.

All runs were performed on otherwise idle system. Several trials were run to ensure reliable results. Times from the first
read of test . vcf were discarded, since subsequent runs benefit from disk buffering (file contents still in memory from
the previous read). The wall time varied significantly on the CentOS system, with the piped command running in less wall
time for a small fraction of the trials. The times shown in the table are typical. Times for FreeBSD and MacOS were fairly
consistent.

Note that there is significant variability between platforms that should not be taken too seriously. These tests were not run
on identical hardware, so they do not tell us anything about relative operating system performance.

We can also collect other data using tools such as top to monitor CPU and memory use and iostat to monitor disk activity.
These commands are covered in more detail in Section 3.14.15 and Section 3.14.16.

System specs Pipe wall time No pipe wall time Pipe CPU time No pipe CPU time
CentOS 717 2.8GHz | 33.43 29.50 13.59 8.45

FreeBSD Phenom

32GHz 13.01 8.90 18.76 8.43

MacBook i5 2.7GHz | 81.09 81.35 84.02 81.20

3.13.6 Practice

Table 3.11: Run times of pipes with cat

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. How does device independence simplify life for Unix users? Give an example.

2. Show an example Unix command that displays the input from a mouse as it is being moved or clicked.

3. What are the standard streams associated with every Unix process? To what file or device are they connected by default?

4. Show a Unix command that saves the output of Is -1 to a file called long-list.txt.

5. Show a Unix command that appends the output of Is -1 /etc to a file called long-list.txt.

Y x® =2

10. Show a Unix command that creates a 1 gigabyte file called new—image filled with O bytes.

How does more list.txt differ from more < list.txt?

Show a C shell command that saves the output and errors of Is -al /ete to all-output.txt.

11. What are two major advantages of pipes over redirecting to a file and then reading it?

Show a Unix command that discards the normal output of Is -1 /etc and shows the error messages on the terminal screen.

Show a Bourne shell command that saves the output of Is -al /etc to output.txt and any error messages to errors.txt.

12. Show a Unix command that lists all the files in and under /etc, sorts them, and paginates the output.

The Research Computing User’s Guide 102 /574

13. What is a foreground process?

14. Which program in the following pipeline runs in the foreground?

shell-prompt: find /etc | sort | more

15. What is a filter program?
16. What is the maximum number of commands allowed in a Unix pipeline?

17. Show a Unix command that prints a long listing of /usr/local/bin to the terminal and at the same time saves it to the file
local-bin.txt.

18. Do the same as above, but include any error messages in the file as well. Show the command for both C shell and Bourne
shell.

19. Is it a good idea to feed files into a pipe using cat, rather than have the next command read them directly? Why or why
not?

Example: Which command below is more efficient?
cat file.txt | sort | uniqg
sort file.txt | unig

3.14 Power Tools for Data Processing

3.14.1 Introduction

Congratulations on reaching the holy land of Unix data processing. It has often been said that if you know Unix well, you may
never need to write a program. The tools provided by Unix often contain all the functionality you need to process your data.
They are like a box of Legos from which we can construct a machine to perform almost any data analysis imaginable from the
Unix shell.

Most of these tools function as filters, so they can be incorporated into pipelines. Most also accept filenames as command-line
arguments for simpler use cases.

In this section, we’ll introduce some of the most powerful tools that are heavily used by researchers to process data files. This
will certainly reduce, if not eliminate, the need to write your own programs for many projects. This is only an introduction to
make you aware of the available tools and the power they can give you.

For more detailed information, consult the man pages and other sources. Some tools, such as awk and sed, have entire books
written about them, in case you want to explore in-depth.

However, do not set out to learn as much as you can about these tools. Set out to learn as much as you need. The ability to
show off your vast knowledge is not the ability to achieve. Knowledge is not wisdom. Wisdom is doing. Learn what you need to
accomplish today’s goals as elegantly as possible, and then do it. You will learn more from this doing than from any amount of
studying. You will develop problem solving skills and instincts, which are far more valuable than encyclopedic knowledge.

Never stop wondering if there might be an even more elegant solution. Albert Einstein was once asked what was his goal in
life. His response: "To simplify." Use the tools presented here to simplify your research and by extension, your life. With this
approach can achieve great things without great effort and spend your time savoring the wonders and mysteries of your work
rather than memorizing facts that might come in handy one day.

3.14.2 Grep

Grep shows lines in one or more text streams that match a given regular expression (RE). It is an acronym for Global Regular
Expression Print (or Pattern or Parser if you prefer).

shell-prompt: grep expression [file ...]

The Research Computing User’s Guide 103 /574

The expression is often a simple string, but can represent RE patterns as described in detail by man re_format on FreeBSD.
There are also numerous web pages describing REs.

Using simple strings or REs, we can search any file stream for lines containing information of interest. By knowing how to
construct REs that represent the information you seek, you can easily identify patterns in your data.

REs resemble globbing patterns, but they are not the same. For example, **’ by itself in a globbing pattern means any sequence
of 0 or more characters. In an RE, "*’ means 0 or more of the preceding character. ** in globbing is expressed as *.*’ in an RE.
Some of the most common RE patterns are shown in Table 3.12.

Pattern Meaning

Any single character
* 0 or more of the preceding character
+ 1 or more of the preceding character

One character in the set or range of the enclosed characters
(same as globbing)
Beginning of the line

$ End of the line
K 0 or more of any character
[a-z]* 0 or more lower-case letters

Table 3.12: RE Patterns

Consider the following C program:

#include <stdio.h>
#include <sysexits.h>
#include <math.h>

int main (int argc,char xargv([])

puts ("Hello!");
printf ("The square root of the # 2 is %f.\n", sqrt(2.0));
printf ("The natural log of the # 2 is %$f.\n", log(2.0));

return EX_OK;

The command below shows all lines containing a call to the printf() function. We use quotes around the string because the shell
will try to interpret the (" without them.

shell-prompt: grep ’'printf(’ progl.c
printf ("The square root of 2 is $f.\n", sqrt(2.0));
printf ("The natural log of 2 is %f.\n", 1o0g(2.0));

We might also wish to show all lines containing any function call in progl.c. Since we are looking for any function name rather
than one particular name, we cannot use a simple string and must construct a regular expression. Variable and function names
begin with a letter or underscore and may contain any number of letters, underscores, or digits after that. So our RE must require
a letter or underscore for the first character and then accept zero or more letters, digits, or underscores after that. We will also
require an argument list (anything between () is good enough for our purposes) and a semicolon to terminate the statement.

shell-prompt: grep ’[a-zA-Z_][a-zA-Z0-9_]x(.*);’ progl.c
puts ("Hello!");
printf ("The square root of 2 is %f.\n", sqrt(2.0));
printf ("The natural log of 2 is %$f.\n", log(2.0));

The following shows lines that have a ’#’ in the first column, which represents a preprocessor directive in C or C++:

shell-prompt: grep ’'"#’ progl.c

The Research Computing User’s Guide 104 /574

#include <stdio.h>
#include <sysexits.h>
#include <math.h>

Without the *~” we match a ’#” anywhere in the line:

shell-prompt: grep ’'#’ progl.c

#include <stdio.h>

#include <sysexits.h>

#include <math.h>
printf ("The square root of the # 2 is $f.\n", sqrt(2.0));
printf ("The natural log of the # 2 is %f.\n", 1log(2.0));

Note Since REs share many special characters with globbing patterns, we must enclose the RE in quotes to prevent the shell
from treating it as a globbing pattern.

Note If we want to match a special character such as .’ or ™ literally, we must escape it (preceded it with a *\'). For example, to
locate method calls in a Java program, which have the form object.method(arguments);, we could use the following:

shell-prompt: grep ’[a-zA-Z_][a-zA-20-9_]x*\.[a-2zA-Z_][a-zA-Z0-9_1*\(.x\);’ progl.java

As an example of searching data files, rather than program code, suppose we would like to find all the lines containing contractions
in text file. This would consist of some letters, followed by an apostrophe, followed by more letters. Since the apostrophe is the
same character as the single quotes we might use to enclose the RE, we either need to escape it (with a ’\’) or use double quotes
to enclose the RE.

shell-prompt: grep ' [a-zA-Z] [a-zA-Z]*\’' [a—zA-Z] [a—zA-Z]«'
shell-prompt: grep "[a-zA-Z][a—-zA-Z]*' [a—zA-Z] [a—zA-Z]*"

Another example would be searching for DNA sequences in a genome. We might use this to locate adapters, artificial sequences
added to the ends of DNA fragments for the sequencing process, in our sequence data. Sequences are usually stored one per line
in a text file in FASTA format. A common adapter sequence is "CTGTCTCTTATA".

Note We can speed up processing by using grep --fixed-strings or fgrep instead of a regular grep. This uses a more efficient
simple string comparison instead of the more complex regular expression matching.

shell-prompt: fgrep CTGTCTCTTATA file.fasta

GCGGCCAACACCTTGCCTGTATTGGCATCCATGATGAAATGGGCGTAACCCTGTCTCTTATACACATCTCCGAG
AAAGGCCTGTATGATAAGTTGGCAAATTTCCTCAAGATTGTTTACTTGATACACCTGTCTCTTATACACATCIC
GACCGAGGCACTCGCCGCGCTTGAGCTCGAGATCGATGCCGTCGACCTGTCTCTTATACACATCTCCGAGCCCA
AAAAAATCCCTCCGAAGCATTGTAGGTTTCCATGCTGTCTCTTATACACATCTCCGAGCCCACGAGACTCCTGA

DNA sequences sometimes have variations, such as single nucleotide polymorphisms, or SNPs, where one nucleotide varies in
different individuals. Suppose the sequence we’re looking for might have either an C or a G in the 5th position. We can use an
RE to accommodate this:

shell-prompt: grep CTGT[CG]TCTTATA file.fasta

It’s hard to see the pattern we were looking for in this output. To solve this problem, we can colorize any matched patterns using
the ——color flag as shown in Figure 3.6.

The Research Computing User’s Guide 105/574

]
FreeBSD moray.acadix bacon ~/Prog/Src/fastg-trim 1009: fgrep --color CTGTCTCTTA
TA file.fasta
GGTTACGCCCATTTCATCATGGATGCCAATACAGGCAAGGTGTTGGCCGCCCGCAATGCCGATGTGCTGAACCACCCCTG
TCTCTTATACACATCTGACGC
GTGTATCAAGTAAACAATCTTGAGGAAATTTGCCAACTTATCATACAGGCCTTTGAAGCTGGTGTTGATTTTCAAGAGAG
TCTGTCTCTTATACACATCTG
GTCGACGGCATCGATCTCGAGCTCAAGCGCGGCGAGTGCCTCGGTCTCGTCGGCGAATCCGGCTGCGGCAAGTCTGTCTC
TTATACACATCTGACGCTGCC
FreeBSD moray.acadix bacon ~/Prog/Src/fastq-trim 1010: []

Figure 3.6: Colorized grep output

There is an extended version of regular expressions that is not supported by the normal grep command. Extended REs include
things like alternative strings, which are separated by a ’I’. For example, we might want to search for either of two adapter
sequences. To enable extended REs, we use egrep or grep --extended-regexp.

shell-prompt: egrep ’'CTGTCTCTTATA|AGATCGGAAGAG’ file.fasta

Extended REs also support the *+” modifier to indicate 1 or more of the previous character, e.g. *[a-z]+’ is shorthand for ’[a-z][a-
z]*.

The grep family of commands are very often used as filters in pipelines. If no file name argument is provided, they will read
from the standard input, like most Unix commands.

The -1, --files-with-matches flag tells grep to merely report the names of files that contain a match. This is often
used to generate a list of file names for use with another command.

Example 3.19 Practice Break

shell-prompt: 1ls /usr/bin | grep ’'"z’

3.14.3 Awk

AWK, an acronym for Aho, Weinberger, and Kernighan (the original developers of the program), is an extremely powerful tool
for processing tabular data. Like grep, it supports RE matching, but unlike grep, it can process individual columns, called

The Research Computing User’s Guide 106 /574

fields, in the data. It also includes a flexible scripting language that closely resembles the C language, so we can perform highly
sophisticated processing of whole lines or individual fields.

Awk can be used to automate many of the same tasks that researchers often perform manually in a spreadsheet program such as
LibreOffice Calc or MS Excel.

There are multiple implementations of awk. The most common are "The one true awk", evolved from the original awk code and
used on many BSD systems. Gawk, the GNU project implementation, is used on most Linux systems. Mawk is an independent
implementation that tends to outperform the others. It is available in most package managers. Awka is an awk-to-C translator
that can convert most awk scripts to C for maximize performance.

Fields by default are separated by white space, i.e. space or tab characters. However, awk allows us to specify any set of
separators using an RE following the —F flag or embedded in the script, so we can process tab-separated (.tsv) files, comma-
separated (.csv) files, or any other data that can be broken down into columns.

An awk script consists of one or more lines containing a pattern and an action. The action is enclosed in curly braces, like a C
code block.

pattern { action }

The pattern is used to select lines from the input, usually using a relational expression such as those found in an if statement.
The action determines what to do when a line is selected. If no pattern is given, the action is applied to every line of input. If no
action is given, the default is to print the line.

In both the pattern and the action, we can refer to the entire line as $0. $1 is the first field: all text up to but not including the first
separator. $2 is the second field: all text between the first and second separators. And so on...

It is very common to use awk "one-liners" on the command-line, without actually creating an awk script file. In this case, the
awk script is the first argument to awk, usually enclosed in quotes to allow for white space and special characters. The second
argument is the input file to be processed by the script.

For example, the file /et c/passwd contains colon-separated fields including the username ($1), user ID ($3), primary group
ID ($4), full name ($5), home directory ($6), and the user’s shell program ($7). To see a list of full names for every line, we could
use the following simple command, which has no pattern (so it processes every line) and an action of printing the fifth field:

shell-prompt: awk -F : ’{ print $5 }’ /etc/passwd
Jason Bacon

D-BUS Daemon User

TCG Software Stack user

Avahi Daemon User

To see a list of usernames and shells:

shell-prompt: awk -F : ’{ print $1, $6 }’ /etc/passwd
bacon /bin/tcsh

messagebus /usr/sbin/nologin

_tss /usr/sbin/nologin

avahi /usr/sbin/nologin

Many data files used in research computing are tabular, with one of the most popular formats being TSV (tab-separated value)
files. The General Feature Format, or GFF file is a TSV file format for describing features of a genome. The first field contains
the sequence ID (such as a chromosome number) on which the feature resides. The third field contains the feature type, such
as "gene" or "exon". The fourth and fifth fields contain the starting and ending positions withing the sequence. The ninth field
contains "attributes", such as the globally unique feature ID and possibly the feature name and other information, separated by
semicolons. If we just want to see the locations and attributes of all the genes in a genome and their names, we could use the
following:

shell-prompt: awk ’$3 == "gene" { print $1, $4, $5, $9 }’ file.gff3
1 3073253 3074322 ID=gene:ENSMUSG00000102693;Name=4933401J01Rik
1 3205901 3671498 ID=gene:ENSMUSG00000051951;Name=Xkr4

The Research Computing User’s Guide 107 /574

Awk uses largely the same comparison operators and C and similar languages. One additional awk operator that is often useful
is ~, which means "contains".

Locate all features whose type contains "RNA". 1In a typical GFF3 file,
this could include mRNA, miRNA, ncRNA, etc.
shell-prompt: awk ’$3 ~ "RNA" { print $1, $4, $5, $9 }’ file.gff3

1 3073253 3074322 ID=gene:ENSMUSG00000102693;Name=4933401J01R1ik
1 3205901 3671498 ID=gene:ENSMUSG00000051951;Name=Xkr4

Suppose we want to extract specific attributes from the semicolon-separated attributes field, such as the gene ID and gene name,
as well as count the number of genes in the input. This will require a few more awk features.

The gene ID is always the first attribute in the field, assuming the feature is a gene. Not every gene has a name, so we will need
to scan the attributes for this information. Awk makes this easy. We can break the attributes field into an array of strings using
the split () function. We can then use a loop to search the attributes for one beginning with "Name=".

To count the genes in the input, we need to initialize a count variable before we begin processing the file, increment it for each
gene found, and print it after processing is finished. For this we can use the special patterns BEGIN and END, which allow us to
run an action before and after processing the input.

We will use the C-like print £ () function to format the output. The basic print statement always adds a newline, so it does
not allow us to print part of a line and finish it with an subsequent print statement.

Since this is a multiline script, we will save it in a file called gene—info.awk and run it using the —f flag, which tells awk to
get the script from a file rather than the command-line.

shell-prompt: awk —-f gene—-info.awk file.gff3

Caution Awk can be finicky about the placement of curly braces. To avoid problems, always place the opening brace
({) for an action on the same line as the pattern.

BEGIN {
gene_count = 0;

$ P "gene" {
Separate attributes into an array
split ($9, attributes, ";");

Print location and feature ID
printf ("%$s %s %$s %s", $1, $4, $5, attributes[1]);

Look for a name attribute and print it if it exists
With the for-in loop, c gets the SUBSCRIPT of each element in the
attributes array
for (¢ in attributes)
{

See if first 5 characters of the attribute are "Name="

if (substr(attributes[c], 1, 5) == "Name=")

printf (" %$s", attributes(c]);

Terminate the output line
printf ("\n");

Count this gene
++gene_count;

The Research Computing User’s Guide 108 /574

END {
printf ("\nGenes found = %d\n", gene_count);

As we can see, we can do some fairly sophisticated data processing with a very short awk script. There is very little that awk
cannot do conveniently with tabular data. If a particular task seems like it will be difficult to do with awk, don’t give up too
easily. Chances are, with a little thought and effort, you can come up with an elegant awk script to get the job done.

That said, there are always other options for processing tabular data. Perl is a scripting language especially well suited to text
processing, with its powerful RE handling capabilities and numerous features. Python has also become popular for such tasks in
recent years.

Awk is highly efficient, and processing steps performed with it are rarely a bottleneck in an analysis pipeline. If you do need better
performance than awk provides, there are C libraries that can be used to easily parse tabular data, such as libxtend. Libxtend
includes a set of DSV (delimiter-separated-value) processing functions that make it easy to read fields from files in formats like
TSV, CSV, etc. Once you have read a line or an individual field using libxtend’s DSV functions, you now have the full power and
performance of C at your disposal to process it in minimal time.

Full coverage of awk’s capabilities is far beyond the scope of this text. Readers are encouraged to explore it further via the awk
man page and one of the many books available on the language.

Example 3.20 Practice Break

shell-prompt: awk -F : ’{ print $1 }’ /etc/passwd
shell-prompt: awk -F : ’$1 == "root" { print $0 }’ /etc/passwd

3.14.4 Cut

The cut command is used to select columns from a file, either by byte position, character position, or like awk, delimiter-separated
columns. Note that characters in the modern world may be more than one byte, so bytes and characters are distinguished here.

To extract columns by byte or character position, we use the —b or —c option followed by a list of positions. The list is comma-
separated and may contain individual positions or ranges denoted with a ’-’. For example, to extract character positions 1 through
10 and 21 through 26 from every line of file.txt, we could use the following:

shell-prompt: cut -c 1-10,21-26 file.txt

For delimiter-separated columns, we use —d to indicate the delimiter. The default is a tab character alone, not just any white
space. The —w flag tells cut to accept any white space (tab or space) as the delimiter. The —£ is then used to indicate the fields to
extract, much like —c is used for character positions. Output is separated by the same delimiter as the input.

For example, to extract the username, userid, groupid, and full name (fields 1, 3, 4, and 5) from /etc/passwd, we could use the
following:

shell-prompt: cut -d : -f 1,3-5 /etc/passwd
ganglia:102:102:Ganglia User
nagios:181:181:Nagios pseudo-user
webcamd:145:145:Webcamd user

The above is equivalent to the following awk command:

shell-prompt: awk -F : ’{ printf("$s:%s:%s:%s\n", $1, $3, $4, $5); }’ /etc/passwd

Example 3.21 Practice Break

shell-prompt: cut -d : -f 1,3-5 /etc/passwd

https://github.com/outpaddling/libxtend/

The Research Computing User’s Guide 109/574

3.14.5 Sed

The sed command is a stream editor. It makes changes to a file stream with no interaction from the user. It is probably most often
used to make simple text substitutions, though it can also do insertions and deletions of lines and parts of lines, even selecting
lines by number or based on pattern matching much like grep and awk. A basic substitution command takes the following
format:

sed -e ’s|pattern|replacement|g’ input-file

Pattern is any regular expression, like those used in grep or awk. Replacement can be a fixed string, but also takes some special
characters, such as &, which represents the string matched by pattern. It can also be empty if you simply want to remove
occurrences of pattern from the text.

The characters enclosing pattern and replacement are arbitrary. The °I’ character is often used because it stands out among most
other characters. If either pattern or replacement contains a ’I’, simply use a different separator, such as ’/’. The ’g’ after the
pattern means "global". Without it, sed will only replace the first occurrence of pattern in each line. With it, all matches are
replaced.

shell-prompt: cat fox.txt

The quick brown fox jumped over the lazy dog.

shell-prompt: sed -e ’s|fox|worm|g’ fox.txt

The quick brown worm jumped over the lazy dog.

shell-prompt: sed -e ’'s/brown //g’ -e ’"s|fox|&y worm|g’ fox.txt
The quick foxy worm jumped over the lazy dog.

Using -E in place of —e causes sed to support extended regular expressions.

By default, sed sends output to the standard output stream. The —i flag tells sed to edit the file in-place, i.e. replace the original
file with the edited text. This flag should be followed by a filename extension, such as ".bak". The original file will then be saved
to filename.bak, so that you can reverse the changes if you make a mistake. The extension can be an empty string, e.g. ” if you
are sure you don’t need a backup of the original.

Caution
There is a rare portability issue with sed. GNU sed requires that the extension be nestled against the —1:

shell-prompt: sed —-i.bak —-e ’'s|pattern|replacement|g’ file.txt

Some other implementations require a space between the —i and the extension, which is more orthodox among Unix

@ commands:
shell-prompt: sed -i .bak -e ’s|pattern|replacement|g’ file.txt

FreeBSD’s sed accepts either form. You must be aware of this in order to ensure that scripts using sed are portable.
The safest approach is not to use the -1 flag, but simply save the output to a temporary file and then move it:

shell-prompt: sed —-e ’s|pattern|replacement|g’ file.txt > file.txt.tmp
shell-prompt: mv file.txt.tmp file.txt

This way, it won’t matter which implementation of sed is present when someone runs your script.

Sed is a powerful and complex tool that is beyond the scope of this text. Readers are encouraged to consult books and other
documentation to explore further.

Example 3.22 Practice Break

shell-prompt: printf "The quick brown fox Jjumped over the lazy dog." > fox.txt
shell-prompt: cat fox.txt

shell-prompt: sed -e ’s|fox|worm|g’ fox.txt

shell-prompt: sed -e ’'s/brown //g’ -e ’"s|fox|&y worm|g’ fox.txt

The Research Computing User’s Guide 110/574

3.14.6 Sort

The sort command sorts text data line by line according to one or more keys. A key indicates a field (usually a column separated
by white space or some other delimiter) and the type of comparison, such as lexical (like alphabetical, but including non-letters)
or numeric.

If no keys are specified, sort compares entire lines lexically. The ——key followed by a field number restricts comparison to that
field. Fields are numbered starting with 1. This can be used in conjunction with the ——~field-separator flag to specify a
separator other than the default white space. The ——numeric-sort flag must be used to perform integer comparison rather
than lexical. The ——general-numeric-sort flag must be used to compare real numbers.

shell-prompt: cat ages.txt

Bob Vila 23
Joe Piscopo 27
Al Gore 19
Ingrid Bergman 26
Mohammad Ali 22
Ram Das 9
Joe Montana 25

shell-prompt: sort ages.txt

Al Gore 19
Bob Vila 23
Ingrid Bergman 26
Joe Montana 25
Joe Piscopo 27
Mohammad Ali 22
Ram Das 9

shell-prompt: sort —--key 2 ages.txt

Mohammad Ali 22
Ingrid Bergman 26
Ram Das 9
Al Gore 19
Joe Montana 25
Joe Piscopo 27
Bob Vila 23
shell-prompt: sort --key 3 —-—-numeric-sort ages.txt
Ram Das 9
Al Gore 19
Mohammad Ali 22
Bob Vila 23
Joe Montana 25
Ingrid Bergman 26
Joe Piscopo 27

The sort command can process files of any size, regardless of available memory. If a file is too large to fit in memory, it is broken
into smaller pieces, which are sorted separately and saved to temporary files. The sorted temporary files are then merged.

The uniq command, which removes adjacent lines that are identical, is often used after sorting to remove redundancy from data.
Note that the sort command also has a ——unique flag, but it does not behave the same as the uniq command. The ——unique
flag compares keys, while the uniq command compares entire lines.

Example 3.23 Practice Break
Using your favorite text editor, enter a few names from the example above into a file called ages.txt.

shell-prompt: cat ages.txt

shell-prompt: sort ages.txt

shell-prompt: sort —-key 2 ages.txt

shell-prompt: sort --key 3 —--numeric-sort ages.txt

shell-prompt: du -sm % | sort -n # Determine biggest directories

The Research Computing User’s Guide 111/574

3.14.7 Tr

The tr (translate) command is a simple tool for performing character conversions and deletions in a text stream. A few examples
are shown below. See the tr man page for details.

We can use it to convert individual characters in a text stream. In this case, it takes two string arguments. Characters in the Nth
position in the first string are replaced by characters in the Nth position in the second string:

shell-prompt: cat fox.txt

The quick brown fox jumped over the lazy dog.
shell-prompt: tr ’"x1’ ’"gh’ < fox.txt

The quick brown fog Jjumped over the hazy dog.

There is limited support for character sets enclosed in square brackets [], similar to regular expressions, including predefined sets
such as [:lower:] and [:upper:]:

shell-prompt: tr '[:lower:]’ ' [:upper:]’ < fox.txt
THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

We can use it to "squeeze" repeated characters down to one in a text stream. This is useful for compressing white space:
shell-prompt: tr -s 7 /7 < fox.txt

The quick brown fox jumped over the lazy dog.

The tr command does not support doing multiple conversions in the same command, but we can use it as a filter:
shell-prompt: tr ’[:lower:]’ ' [:upper:]’ < fox.txt | tr -s ' '

THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG.

There is some overlap between the capabilities of tr, sed, awk, and other tools. Which one you choose for a given task is a matter
of convenience.

Example 3.24 Practice Break

shell-prompt: printf "The quick brown fox Jjumped over the lazy dog." > fox.txt
shell-prompt: cat fox.txt
shell-prompt: tr ’[:lower:]’ ' [:upper:]’ < fox.txt | tr -s ' '

3.14.8 Find

The find command is a powerful tool for not only locating path names in a directory tree, but also for taking any desired action
when a path name is found.

Unlike popular search utilities in macOS, Windows, and the Unix locate command. find does not use a previously constructed
index of the file system, but searches the file system in its current state. Indexed search utilities very quickly produce results
from a recent snapshot of the file system, which is rebuilt periodically by a scheduled job. This is much faster than an exhaustive
search, but will miss files that were added since the last index build. The find command will take longer to search a large directory
tree, but also guarantees accurate results.

The basic format of a find command is as follows:

shell-prompt: find top-directory search-criteria [optional-action \;]

The search-criteria can be any attribute of a file or other path name. To match by name, we use —name followed by a globbing
pattern, in quotes to prevent the shell from expanding it before passing it to find. To search for files owned by a particular user
or group, we can use —user or —group. We can also search for files with certain permissions, a minimum or maximum age,
and many other criteria. The man page provides all of these details.

The default action is to print the relative path name of each match. For example, to list all the configuration files under /etc,
we could use the following:

The Research Computing User’s Guide 112/574

shell-prompt: find /etc -name ’*.conf’

We can run any Unix command in response to each match using the —exec flag followed the command and a ’;” or ’+’. The
’;” must be escaped or quoted to prevent the shell from using it as a command separator and treating everything after it as a new
command, separate from the find command. The name of the matched path is represented by *{}’.

shell-prompt: find /etc -name ’*.conf’ -exec 1ls -1 "{}’ \;

With a ’;” terminating the command, the command is executed immediately after each match. This may be necessary in some
situations, but it entails a great deal of overhead from running the same command many times. Replacing the ’;> with a ’+’
tells find to accumulate as many path names as possible and pass them all to one invocation of the command. This means the

command could receive thousands of path names as arguments and will be executed far fewer times.

shell-prompt: find /etc —-name ’*.conf’ -exec 1ls -1 ’{}’' +

There are also some predefined actions we can use instead of spelling out a —exec, such as —print, which is the default
action, and —1s, which is equivalent to —exec 1s -1 ’{}’ +. The —-print action is useful for showing path names being
processed by another action:

shell-prompt: find Data —-name ’x.bak’ -print -exec rm ’'{}’ +

Sometimes we may want to execute more than one command for each path matched. Rather than construct a complex and messy
—exec, we may prefer to write a shell script containing the commands and run the script using —exec. Scripting is covered in
Chapter 4.

Example 3.25 Practice Break

shell-prompt: find /etc —-name ’=*.conf’ -exec 1ls -1 ’{}’ +

3.14.9 Xargs

As stated earlier, most Unix commands that accept a file name as an argument will accept any number of file names. When
processing 100 files with the same program, it is usually more efficient to run one process with 100 file name arguments than to
run 100 processes with one argument each.

However, there is a limit to how long Unix commands can be. When processing many thousands of files, it may not be possible
to run a single command with all of the filenames as arguments. The xargs command solves this problem by reading a list of
file names from the standard input (which has no limit) and feeding them to another command as arguments, providing as many
arguments as possible to each process created.

The arguments processed by xargs do not have to be file names, but usually are. The main trick generating the list of files.
Suppose we want to change all occurrences of "fox" to "toad" in the files input*.txt in the CWD. Our first thought might be a
simple command:

shell-prompt: sed -i '’ -e ’'s|fox|toad|g’ inputx.txt

If there are too many files matching "input*.txt", we will get an error such as "Argument list too long". One might think to solve
this problem using xargs as follows:

shell-prompt: ls inputx.txt | xargs sed -i '’ -e ’'s|fox|toad|g’

However, this won’t work either, because the shell hits the same argument list limit for the Is command as it does for the sed
command.

The find command can come to the rescue:

shell-prompt: find . —-name ’'inputx.txt’ | xargs sed -1 '’ -e ’'s|fox|toad|g’

The Research Computing User’s Guide 113 /574

Since the shell is not trying to expand ’*.txt’ to an argument list, but instead passing the literal string **.txt’ to find, there is no
limit on how many file names it can match. The find command is sophisticated enough to work around the limits of argument
lists.

The find command above will send relative path names of every file with a name matching ’input*.txt” in and under the CWD.
If we don’t want to process files in subdirectories of CWD, we can limit the depth of the find command to one directory level:

shell-prompt: find . -maxdepth 1 -name ’=«*.txt’ \
| xargs sed -i '’ -e ’'s|fox|toadlg’

Note
The xargs command places the arguments read from the standard input after any arguments included with the command. So
the commands run by xargs will have the form

sed -1 '’ -e ’'s|fox|toad|g’ inputl.txt input2.txt input3.txt

Some xargs implementations have an option for placing the arguments from the standard input before the fixed arguments, but
this is still limited. There may be cases where we want the arguments intermingled. The most portable and flexible solution to
this is writing a simple script that takes all the arguments from xargs last, and constructs the appropriate command with the
arguments in the correct order. Scripting is covered in Chapter 4.

Most xargs implementations also support running multiple processes at the same time. This provides a convenient way to utilize
multiple cores to parallelize processing. If you have a computer with 16 cores and speeding up your analysis by a factor of nearly
16 is good enough, then this can be a very valuable alternative to using an HPC cluster. If you need access to hundreds of cores
to get your work done in a reasonable time, then a cluster is a better option.

shell-prompt: find . —-name ’x.txt’ \
| xargs -P 8 sed -1 '’ -e ’'s|fox|toadl|g’

A value of 0 following -P tells xargs to detect the number of available cores and use all of them. Some, but not all xargs
implementations support ——max—procs in place of —P. While using of long options is more readable, it is not portable in this
instance.

There is a more sophisticated open source program called GNU parallel that can run commands in parallel in a similar way, but
with more flexibility. It can be installed via most package managers. See Section 3.14.17 for an introduction.

Example 3.26 Practice Break

shell-prompt: find /etc -name ’*.conf’ | xargs ls -1

3.14.10 Bc

The bc (binary calculator) command is an unlimited range and precision calculator with a scripting language very similar to C.
When invoked with —1 or ——mathlib, it includes numerous additional functions including 1(x) (natural log), e(x) (exponential),
s(x) (sine), c(x) (cosine), and a(x) (arctangent). There are numerous standard functions available even without ——mathlib. See
the man page for a full list.

By default, be prints the result of each expression evaluated followed by a newline. There is also a print statement that does not
print a newline. This allows a line of output to be constructed from multiple expressions, the last of which includes a literal "\n".

shell-prompt: bc —--mathlib
sqrt (2)
1.41421356237309504880

print sgrt(2), "\n"
1.41421356237309504880

The Research Computing User’s Guide 114 /574

e (1)
2.71828182845904523536

x=10
5 x x™2 + 2 x» x + 1
521

quit

Bec is especially useful for quick computations where extreme range or precision is required, and for checking the results from
more traditional languages that lack such range and precision. For example, consider the computation of factorials. N factorial,
denoted N, is the product of all integers from one to N. The factorial function grows so quickly that 21! exceeds the range of
a 64-bit unsigned integer, the largest integer value supported by most CPUS and most common languages. The C program and
output below demonstrate the limitations of 64-bit integers.

#include <stdio.h>
#include <sysexits.h>

int main (int argc,char xargvl[])

unsigned long c, fact = 1;

for (¢ = 1; ¢ <= 22; ++c¢)
{
fact *x= c;
printf ("$1lu! = %$lu\n", c, fact);
}
return EX_OK;

1! =1

21 =2

3! =6

41 = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 6227020800

14! = 87178291200

15! = 1307674368000

16! = 20922789888000

17! = 355687428096000

18! = 6402373705728000

19! = 121645100408832000
20! = 2432902008176640000
21! = 14197454024290336768 This does not equal 20! * 21
22! = 17196083355034583040
23! = 8128291617894825984
24! = 10611558092380307456
25! = 7034535277573963776

At 21!, an integer overflow occurs. In the limited integer systems used by computers, adding 1 to the largest possible value
produces a result of 0. The integer number sets used by computers are called modular number systems and are actually circular.
The limitations of computer number systems are covered in Chapter 14.

The Research Computing User’s Guide 115/574

In contrast, be can compute factorials of any size, limited only by the amount of memory needed to store all the digits. It is, of
course, much slower than C, both because it is an interpreted language and because it performs multiple precision arithmetic,
which requires multiple machine instructions for every math operation. However, it is more than fast enough for many purposes
and the easiest way to do math that is beyond the capabilities of common languages.

The be script below demonstrates the superior range of be. The first line (#!/usr/bin/be -1) tells the Unix shell how to run the
script, so we can run it by simply typing its name, such as ./fact.bc. This will be covered in Chapter 4. For now, create the script
using nano fact.be and run it with be < fact.be.

#!/usr/bin/bc -1

fact = 1;
for (¢ = 1; ¢ <= 100; ++c)
{

fact x= c;

print ¢, "!= ", fact, "\n";
}
quit
1!'=1
2= 2
3= 6
41= 24
5!= 120
6!= 720
7!'= 5040
8!= 40320
9!= 362880

10!= 3628800

11!= 39916800

12!= 479001600

13!= 6227020800

14!= 87178291200

15!= 1307674368000

l6!= 20922789888000

17!= 355687428096000

18!= 6402373705728000

19!= 121645100408832000

20!'= 2432902008176640000

21!= 51090942171709440000
221= 1124000727777607680000
23!= 25852016738884976640000
24!'= 620448401733239439360000
25!= 15511210043330985984000000

[Output removed for brevity]

100!= 93326215443944152681699238856266700490715968264381621468592963\
89521759999322991560894146397615651828625369792082722375825118521091\
6864000000000000000000000000

Someone with a little knowledge of computer number systems might think that we can get around the range problem in general
purpose languages like C by using floating point rather than integers. This will not work, however. While a 64-bit floating point
number has a much greater range than a 64-bit integer (up to 103%® vs 10!° for integers), floating point actually has less precision.
It sacrifices some precision in order to achieve the greater range. The modified C code and output below show that the double
(64-bit floating point) type in C only gets us to 22!, and round-off error corrupts 23! and beyond.

#include <stdio.h>
#include <sysexits.h>

int main (int argc,char xargv([])

The Research Computing User’s Guide 116/574

double ¢, fact = 1;

for (¢ = 1; ¢ <= 25; ++c¢)
{
fact *x= c;
printf ("$0.0f! = £0.0f\n", c, fact);
}
return EX_OK;

1t =1

21 = 2

3! =6

41 = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 6227020800

14! = 87178291200

15! = 1307674368000

16! = 20922789888000

17! = 355687428096000

18! = 6402373705728000

19! = 121645100408832000

20! = 2432902008176640000

21! = 51090942171709440000
22! = 1124000727777607680000
231 = 25852016738884978212864
24! = 620448401733239409999872
25! = 15511210043330986055303168

Example 3.27 Practice Break
shell-prompt: printf "sqgrt (31.67)\nquit\n" | bc -1

3.14.11 Tar

The tar command, short for TApe Archive, is a tool for combining multiple files into one. Recall that Unix incorporates the idea
of device independence, where an input/output device is treated exactly like an ordinary file. Originally, tar was meant to write
the archive to a tape device, such as /dev/tape. This was a way to create backups for important files on removable tapes in
case of a disk failure or other mishap.

Thanks to device independence, we can substitute any other device or ordinary file for /dev/tape. In modern times, backups
are more often done over high-speed networks to sophisticated backup systems and tar is more often used to create farballs,
ordinary files containing archives for sharing whole directories. Most open source software is downloaded as a single tarball and
unpacked on the local system.

The basic command template for creating a tarball is as follows:

shell-prompt: tar -cvf archive.tar path [path ...]

Archiving files this way has many potential advantages. It saves disk space, since each file has on average 1/2 of a disk block
unused. Files can only allocate whole blocks and almost never have a size that is an exact multiple of the block size. Replacing

The Research Computing User’s Guide 117 /574

many files with one archive reduces the size of the directory containing the files. Processing many small files (moving, transfer-
ring to another computer over a network, etc.) takes longer than processing one large file, since there is overhead for opening
each file.

The —c flag means "Create". The —v means "Verbose" (echo each file name as it is added). The —f means "File name". If not
provided, the default is the first tape device in /dev. The "path" arguments name files or directories to archive.

We can specify any number of files and directories, but the file name of the archive must come immediately after the - flag.

Note
The tar command is one of the commands that predates the convention of using a -’ to indicate flags. Hence, you may see
examples on the web such as:

tar cvf file.tar directory

To unpack a tarball, we use the —x flag, which means "eXtract".

shell-prompt: tar —-xvf archive.tar

We can list the contents of a tarball using —t.

shell-prompt: tar -tf archive.tar

Example 3.28 Practice Break

shell-prompt: cd

shell-prompt: mkdir Tempdir

shell-prompt: touch Tempdir/templ
shell-prompt: touch Tempdir/temp2
shell-prompt: tar -cvf tempdir.tar Tempdir
shell-prompt: tar —-tf tempdir.tar
shell-prompt: rm —-rf Tempdir

shell-prompt: tar -xvf tempdir.tar
shell-prompt: 1ls Tempdir

3.14.12 Gazip, bzip2, xz

The gzip (GNU zip), bzip2 (Burrows-Wheeler zip), and xz (LZMA zip) commands compress files in order to save disk space.
In the most basic use, we run the command with a single file argument:

shell-prompt: gzip file
shell-prompt: bzip2 file
shell-prompt: xz file

This will produce a compressed output file with a ".gz", ".bz2", or ".xz" extension. The original file is automatically removed
after the compressed file is successfully created.

The compressed files can be decompressed using companion commands to restore the original file. Compression is lossless
(unlike JPEG), so the restored file will be identical to the original.

shell-prompt: gunzip file.gz
shell-prompt: bzip2 file.bz2
shell-prompt: xz file.xz

All three commands can be used as filters to directly compress output from another program:

The Research Computing User’s Guide 118 /574

shell-prompt: myanalysis | gzip > output.gz
shell-prompt: myanalysis | bzip2 > output.bz2
shell-prompt: myanalysis | xz > output.xz

Likewise, the decompression tools can send decompressed output to another program via a pipe. They also include analogs to
the cat command for better readability:

shell-prompt: gunzip -c output.gz | more

shell-prompt: bunzip2 -c output.bz2 | more
shell-prompt: bzcat output.bz | more

shell-prompt: unxz -c output.xz | more
shell-prompt: xzcat output.xz | more

Note

For historical reasons, the portable command for viewing gzipped files is zcat, not gzcat. However, as of this writing, zcat
on macOS looks for a ".Z" extension (from the outdated compress command), and only gzcat works with ".gz" files. Hence,
gunzip -c is the most portable approach.

The choice between them is a matter of speed vs compression ratio. Gzip is generally the fastest, but achieves the least com-
pression. Xz produces the best compression, but at a high cost in CPU time. Bzip2 produces intermediate compression and
is also CPU-intensive. All three compression tools allow the user to control the compression ratio in order to trade speed for
compression. Lower values use less CPU time but to not compress as well.

shell-prompt: myanalysis | xz -3 > output.xz

If a program produces high-volume output (more than a few megabytes per second), some compression tools may not be able to
keep up. You may want to use gzip and/or lower the compression level in these cases.

When archiving data for long-term storage, on the other hand, you will generally want the best possible compression and should
not be too concerned about how long it takes. There are numerous websites containing benchmark data comparing the run time
and compression of these tools with various compression levels. Such data will not be included in this guide as it is dated: it will
change as the tools are continually improved.

Decompression is generally much faster than compression. While xz with medium to high compression levels requires a great
deal of CPU time, unxz can decompress the data very quickly. Hence, if files need only be compressed once, but read many
times, Xz may be a good choice.

All three tools are integrated with tar in order to produce compressed tarballs. This can be done with a pipe by specifying "-" as
the filename following —f, orusing -z, —--gzip, —--gunzip,-j, —--bzip2, —--bunzip2,or-J, --xz withthe tar
command. The conventional file name extensions are ".tar.gz" or ".tgz" for gzip, ".tar.bz2" or ".tbz" for bzip2, and ".tar.xz" or
".txz" for xz.

shell-prompt: tar —-cvf - Tempdir | gzip > tempdir.tgz
shell-prompt: tar -zcvf tempdir.tgz Tempdir

shell-prompt: tar -cvf - Tempdir | bzip2 > tempdir.tbz
shell-prompt: tar —-jcvf tempdir.tbz Tempdir

shell-prompt: tar -cvf - Tempdir | xz > tempdir.txz
shell-prompt: tar -Jcvf tempdir.txz Tempdir

The Research Computing User’s Guide 119/574

Example 3.29 Practice Break

shell-prompt: cat | xz > test.xz
Type in some text, then press Ctrl+d.
shell-prompt: xzcat test.xz

shell-prompt: tar -Jcvf tempdir.txz Tempdir

3.14.13 Zip, unzip

Zip is both an archiver and compression tool in one. It was originally developed by Phil Katz, co-founder of PKZIP, Inc. in
Milwaukee, WI in 1989, for MS-DOS. The zip format has become the standard for many other Windows-based archive tools.
The compression algorithms have evolved significantly since the original PKZIP.

The zip and unzip commands are open source tools for creating and extracting .zip files. They are primarily for interoperability
with Windows file archives and far less popular than tarballs compressed with gzip, bzip2, and xz.

3.14.14 Time

The time command runs another command under its supervision and measures wall time, user time, and system time. Wall time,
also known as real time, is the elapsed in the world while a program is running. The term was coined at a time when most people
had clocks on their walls, rather than relying on a smart phone. User time is the time spent using a core. If a program uses only
one core (logical CPU), user time is less than wall time. If it uses more than one core, user time can exceed wall time. System
time is the time spent by the operating system performing tasks on behalf of the process. Hence total CPU time is user time +
system time.

The time command is used by simply prefixing any other Unix command with "time ". Some shells have an internal time
command, which presents output in a different format than the external time command normally found in /usr/bin. The T
shell internal time command also reports percent of CPU time used. Low CPU utilization generally indicates that the process
was I/O-bound, i.e. it spent a lot of time waiting for disk or other input/output transactions and therefore was not utilizing the
CPU. Also reported are memory use in kibibytes, a count of I/O operations, and page faults (where memory blocks are swapped
to or from disk due to memory being full).

shell-prompt: time find /usr/local/lib > /dev/null
0.055u 0.094s 0:00.15 93.3% 43+179k 0+0io Opf+Ow

shell-prompt: /usr/bin/time find /usr/local/lib > /dev/null
0.14 real 0.04 user 0.09 sys

Reported times will vary, usually by a fraction of a second, due to limited precision of measurement and other factors. It is
usually fairly consistent for programs that use at least a few seconds of CPU time.

Example 3.30 Practice Break

shell-prompt: time find /usr/local/lib > /dev/null

3.14.15 Top

The top command displays real-time information about currently running processes, sorted in order of resource use. It does not
show information about all processes, but only the top resource users. Snapshots are reported every two seconds by default.

At the top of the screen is a summary of the system state, including load average (% of available cores in use), total processes
running and sleeping (waiting for input/output), and a summary of memory (RAM and swap) use. Swap is an area of disk used to
extend the amount of memory apparent to processes. Processes see the virfual memory size, which is RAM (electronic memory)
+ swap.

The Research Computing User’s Guide

120 /574

Tag Meaning

PID The process ID

USERNAME User owning the process

THR Number of threads (cores used)

PRI CPU scheduling priority

NICE Nice value: Limits scheduling priority

SIZE Virtual memory allocated

RES Resident memory: Actual RAM (not swap) used

State of process at the moment of the last snapshot, such as
running (using a core), waiting for I/O, select (waiting on

STATE any of multiple devices) pipdwt (writing to a pipe), nanslp
(sleeping for nanoseconds), etc.

C Last core on which it ran

TIME CPU time accumulated so far

WCPU Weighted CPU % currently using

COMMAND Command executed, usually truncated

Table 3.13: Column headers of top command

Below the system summary is information about the most active and resource-intensive processes currently running. Columns in

the example below are summarized in Table 3.13.

Different operating systems will display slightly different information. There are many command-line flags to alter behavior, and

behavior can be adjusted while running. Press "h’ for a help menu to see the options for altering output.

last pid: 70340; load averages: 0.67, 0.34, 0.35; b up 3+03:11:57 08:57:32
61 processes: 3 running, 58 sleeping

CPU: 40.6% user, 0.0% nice, 2.2% system, 0.0% interrupt, 57.2% idle

Mem: 145M Active, 1871M Inact, 166M Laundry, 1210M Wired, 648M Buf, 4247M Free
Swap: 3852M Total, 3852M Free

PID USERNAME THR PRI NICE SIZE RES STATE © TIME WCPU COMMAND
70338 bacon 1 79 0 13M 2160K CPU2 2 0:03 72.65% fastg-tr
70340 bacon 1 79 0 13M 3056K CPU1l 1 0:03 72.15% gzip
70339 bacon 1 44 0 13M 2856K pipdwt 3 0:01 28.68% gunzip
69958 bacon 3 20 0 237M 92M select 2 0:02 0.54% coreterm
9690 root 5 20 0 144M 80M select 0 5:08 0.23% Xorg
9719 bacon 4 20 0 340M 132M select 1 3:42 0.12% lumina-d

70332 bacon 1 20 0 14M 3668K CPUO 0 0:00 0.05% top
1644 root 1 20 0 13M 1656K select 0 0:58 0.01% powerd

27489 root 14 -44 r8 20M 7576K cuse-s 1 0:01 0.00% webcamd
9756 bacon 1 20 0 51M 24M select 0 0:03 0.00% python3.
1666 root 1 20 0 13M 1748K select 3 4:29 0.00% moused
9716 bacon 1 20 0 27M 11M select 1 0:13 0.00% fluxbox
1756 root 1 20 0 18M 3400K select 0 0:04 0.00% sendmail
1315 root 1 20 0 11M 1020K select 2 0:02 0.00% devd
9744 bacon 3 20 0 153M 48M select 2 0:02 0.00% python3.
1495 root 1 20 0 13M 2100K select 1 0:02 0.00% syslogd
1641 root 1 20 0 13M 1984K wait 1 0:01 0.00% sh

24775 bacon 4 20 0 34M 7220K select 3 0:01 0.00% at-spi2-
9711 bacon 3 20 0 94M 21M select 2 0:01 0.00% start-1lu
1725 root 1 20 0 13M 1992K nanslp 3 0:01 0.00% cron
1615 messagebus 1 20 0 14M 2860K select 0 0:01 0.00% dbus-dae
1639 ntpd 1 20 0 21M 3308K select 3 0:01 0.00% ntpd

Example 3.31 Practice Break

Run top, press "h’ to see the help screen, and press 'n’ followed by ’5’ to make the screen less noisy.

The Research Computing User’s Guide 121 /574

3.14.16 lostat

The iostat command displays information about disk activity and possibly other status information, depending on the flags used.
Unfortunately, iostat is one of the rare commands that is not well-standardized across Unix systems. Check the man page on
your system for details on all the flags. Here we show basic use for monitoring disk activity similarly to how we monitor CPU
and memory use with top.

Low CPU utilization in top often indicates that a process is I/O-bound (e.g. spending a great deal of time waiting for disk
operations). Processes go to sleep and do not use the CPU while waiting for disk and other input/output. To help verify this, we
can check the STATE column in top as well. If it shows a state such as "wait", "select", or "pipe", then the process is waiting for
I/O. Lastly, we can use iostat to see exactly how busy the disks are. This tells us nothing about a specific process, but we can

generally deduce which processes are causing high disk activity.

The FreeBSD iostat offers concise output on a single line including the rates of tty (terminal) and disk throughput, and some
CPU stats similar to top. We can request an update every N seconds by specifying —w N or simply N. The header is kindly
reprinted when it is scrolled off the terminal.

FreeBSD shell-prompt: iostat 1

tty adal cd0 pass0 cpu

tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s wus ni sy in id

4 583 47.0 5 0.2 0.0 0 0.0 0.0 0 0.0 5 0 1 0 95

1 537 1024 18 18.0 0.0 0 0.0 0.0 0 0.0 45 0 1 0 54
[snip]

0 733 988 18 17.4 0.0 0 0.0 0.0 0 0.0 42 0 2 0 56

0 295 1024 18 18.0 0.0 0 0.0 0.0 0 0.0 42 0 2 0 55

tty adal cdo pass0 cpu

tin tout KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s wus ni sy in id

0 300 927 21 19.0 0.0 0 0.0 0.0 0 0.0 45 0 1 0 54

0 457 536 35 18.3 0.0 0 0.0 0.0 0 0.0 44 0 2 0 54

Apple’s iostat is derived from FreeBSD’s and has a similar output format and behavior.

macOS shell-prompt: iostat 1
diskO cpu load average
KB/t tps MB/s us sy id 1m 5m 15m

13.46 3 0.03 7 588 1.15 1.03 1.01
11.97 289 3.38 40 13 47 1.15 1.03 1.01
4.00 1 0.00 6 3 91 1.15 1.03 1.01
0.00 0 0.00 0 298 1.15 1.03 1.01
0.00 0 0.00 1 297 1.14 1.03 1.01
4.25 145 0.60 9 685 1.14 1.03 1.01

The Linux iostat has significantly different options and output format. In addition, it may not be present on all Linux systems by
default. On RHEL (Redhat Enterprise Linux), for example, we must install the sysstat package using the yum package manager.
The output format contains multiple lines for each snapshot, but presents similar information.

RHEL shell-prompt: yum install -y sysstat

RHEL shell-prompt: iostat 1

Linux alma8.localdomain bacon ~ 1001: (pkgsrc): iostat 1

Linux 4.18.0-372.26.1.e18 6.x86_64 (alma8.localdomain) 10/16/2022 _x86_64_(4 CPU)

avg-cpu: %user %$nice %system %$iowait $steal %$idle

0.14 0.00 0.30 0.10 0.00 99.46
Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 11.57 250.38 34.24 443223 60607
scd0 0.01 0.00 0.00 1 0
dm-0 11.53 221.50 33.04 392110 58492

dm-1 0.06 1.25 0.00 2220 0

The Research Computing User’s Guide 122 /574

avg-cpu: %user $nice %$system %$iowait $steal %$idle

0.00 0.00 0.25 0.00 0.00 99.75
Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 0.00 0.00 0.00 0 0
scd0 0.00 0.00 0.00 0 0
dm-0 0.00 0.00 0.00 0 0
dm-1 0.00 0.00 0.00 0 0

3.14.17 GNU Parallel

GNU Parallel is a sophisticated open source tool for running multiple processes simultaneously. Users who do not have access to
an HPC cluster for running large parallel jobs can at least utilize all the cores on their laptop or workstation using GNU parallel.
GNU Parallel can be installed in seconds using most package managers.

In its simplest form, GNU parallel can be used as a drop-in replacement for xargs:
shell-prompt: find . —-name ’'input-x.txt’ | xargs analyze

shell-prompt: find . —-name ’'input-x.txt’ | parallel analyze

However, GNU parallel has many options for more sophisticated execution. The numerous use cases and syntax of GNU parallel
are beyond the scope of this guide. There are many web tutorials and even books about GNU Parallel for details. If GNU parallel
is properly installed on your system (i.e. via a package manager), you can begin by running man parallel_tutorial.

Note
The GNU parallel tutorial, at the time of this writing, contains some examples of overcomplicating simple tasks, such as the
following:

The tutorial recommends the following to generate sample input files:
shell-prompt: perl -e ’'printf "A B _C_"' > abc_-file
shell-prompt: perl -e ’for(1..1000000) {print "$_\n"}’ > numl000000

In reality, perl serves no purpose in either case.

We can just use the POSIX printf command:
shell-prompt: printf "A_B_C_" > abc_-file
shell-prompt: printf "%$s\n" ‘seq 1 1000‘ > numsl1000000

3.14.18 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is a regular expression? Is it the same as a globbing pattern?

2. Show a Unix command that shows lines in analysis.c containing hard-coded floating point constants.
3. How can we speed up grep searches when searching for a fixed string rather than an RE pattern?
How can we use extended REs with grep?

How can we make the matched pattern visible in the grep output?

Describe two major differences between grep and awk.

A

How does awk compare to spreadsheet programs like LibreOffice Calc and MS Excel?

The Research Computing User’s Guide 123 /574

8.

10.

11.
12.

13.

14.
15.
16.

17.

18.

19.
20.
21.

The /etc/group file contains colon-separated lines in the form groupname:password:groupid:members. Show an awk com-
mand that will print the groupid and members of the group "root".

. A GFF3 file contains tab-separated lines in the form "seqid source feature-type start end score strand phase attributes”. The

first attribute for an exon feature is the parent sequence ID. Write an awk script that reports the seqid, start, end, strand,
and parent for each feature of type "exon". It should also report the number of exons and the number of genes. To test your
script, download Mus_musculus. GRCm39.107.chromosome.1.gff3.gz from ensembl.org and then do the following:

gunzip Mus_musculus.GRCm39.107.chromosome.l.gff3.gz
awk —-f your-script.awk Mus_musculus.GRCm39.107.chromosome.l.gff3

Show a cut command roughly equivalent to the following awk command, which processes a tab-separated GFF3 file.

awk ’{ print $1, $3, $4, $5 }’ file.gff3

Show a sed command that replaces all occurrences of "wolf" with "werewolf" in the file halloween-list.txt.

Show a command to sort the following data by height. Show a separate command to sort by weight. The data are in
params.txt.

ID Height Weight

1 34 10
2 40 14
3 29 9

4 28 11

Show a Unix command that reads the file fox.txt, replaces the word "fox" with "toad" and converts all lower case letters to
upper case, and stores the output in big-toad.txt.

Show a Unix command that lists and removes all the files whose names end in ’.0’ in and under ~/Programs.
Why is the xargs command necessary?

Show a Unix command that removes all the files with names ending in ".tmp" only in the CWD, assuming that there are
too many of them to provide as arguments to one command. The user should not be prompted for each delete. (Check the
rm man page if needed.)

Show a Unix command that processes all the files named *input*’ in the CWD, using as many cores as possible, through a
command such as the following:

analyze —--limit 5 inputl input2

What is the most portable and flexible way to use xargs when the arguments it provides to the command must precede
some of the fixed arguments?

What is the major advantage of the be calculator over common programming languages?

Show a bc expression that prints the value of the natural number, e.

Write a be script that prints the following. Create the script with nano sqrt.bc and run it with be -1 < sqrt.be.

sgrt (1) = 1.00000000000000000000
sgrt (2) = 1.41421356237309504880
sgrt (3) = 1.73205080756887729352
sgrt (4) = 2.00000000000000000000
sgrt (5) = 2.23606797749978969640
sqrt (6) = 2.44948974278317809819
sgrt (7) = 2.64575131106459059050
sqgrt (8) = 2.82842712474619009760
sqgrt (9) = 3.00000000000000000000
sgrt (10) = 3.16227766016837933199

http://ftp.ensembl.org/pub/release-107/gff3/mus_musculus/Mus_musculus.GRCm39.107.chromosome.1.gff3.gz

The Research Computing User’s Guide 124 /574

22. What are some advantages of archiving files in a tarball?

23. Show a Unix command that creates a tarball called research.tar containing all the files in the directory ./Research.
24. Show a Unix command that saves the output of find /etc to a compressed text file called find-output.txt.bz2.
25. Show a Unix command for viewing the contents of the compressed text file output.txt.gz, one page at a time.

26. Show a Unix command that creates a tarball called research.txz containing all the files in the directory ./Research.
27. What are zip and unzip primarily used for on Unix systems?

28. Show a Unix command that reports the CPU time used by the command awk -f script.awk input.tsv.

29. Show a Unix command that will help us determine which processes are using the most CPU time or memory.

30. How can we find out how to adjust the behavior of top while it is running?

31. What kind of output from top might suggest that a process is I/O-bound? Why?

32. Show a Unix command that continuously monitors total disk activity on a Unix system.

33. How can users who do not have access to an HPC cluster run things in parallel, in a more sophisticated way than possible
with standard Unix tools such as xargs?

3.15 File Transfer

Many users will need to transfer data to or from remote servers. For example, we often want to analyze publicly available data
hosted on a web server. Users of a shared research computer or HPC cluster running Unix may also need to transfer files from
their computer to the Unix machine, run research programs, and finally transfer results back to their computer. There are many
software tools available to accomplish this. Some of the convenient standard tools are described below.

3.15.1 Downloading Files with Curl, Fetch, and Wget

The curl, fetch, and wget commands are open source command-line tools for downloading files from a remote server. Most
often, they serve the same purpose as a web browser. However, they allow us to automate the downloading of files when we
know the URL (Uniform Resource Locator), also known as the web address. This is especially useful when we script an analysis
that requires many files retrieved from one or more websites. Scripting is covered in Chapter 4.

The URL begins with a protocol indicator, such as "https:" or "ftp:". This is followed by the server name (such as those reported
by the hostname command), and finally a path name on the remote server.

Curl is included in the default installation of some GNU/Linux operating systems and is easily installed via package managers
on most other systems. Unlike other tools, it sends output to the standard output by default. To save the downloaded file using
the same name as on the remote system, we need to add the -0 (capital O) flag:

shell-prompt: curl -0 http://ftp.ensembl.org/pub/release-107/gff3/homo_sapiens/Homo_sapiens <
.GRCh38.107.chromosome.l.gff3.gz

Fetch is a somewhat simpler FreeBSD-specific tool included in the base system. The FreeBSD ports system is heavily dependent
on fetch for automated downloading of files from various developer websites. Relying on the more complex and independently
developed curl or wget would be riskier. When writing scripts that download files, it is generally better to use curl or wget so
that the script will be portable to other systems that may not offer FreeBSD’s fetch as a package. Fetch is mentioned here mainly
as a fall-back option for researchers using FreeBSD.

shell-prompt: fetch http://ftp.ensembl.org/pub/release-107/gff3/homo_sapiens/Homo_sapiens. <
GRCh38.107.chromosome.l.gff3.gz

Woget is fairly comparable to curl in its interface and capabilities. It is also included in the base install of some GNU/Linux
operating systems and easily installed via most package managers on other systems.

The Research Computing User’s Guide 125/574

shell-prompt: wget http://ftp.ensembl.org/pub/release-107/gff3/homo_sapiens/Homo_sapiens. <
GRCh38.107.chromosome.l.gff3.gz

Example 3.32 Practice Break
Run any or all of the sample commands shown above.

3.15.2 Pushing and Pulling Files with SFTP and Rsync

SFTP (Secure File Transfer Protocol) is often used to remotely log into another machine over a network for the purpose of
transferring files to or from it. It is based on ftp, which should no longer be used, since it does not use encryption. Not all remote
Unix systems have SFTP enabled.

SFTP provides a shell-like environment that allows us to list files and directories, cd into subdirectories, push (send, upload) files
using put and pull (receive, download) files using get. It does not allow us to run programs on the remote system.

shell-prompt: sftp joe@unixdevl.ceas.uwm.edu
password: (Nothing is echoed when the password is typed)
Connected to unixdevl.ceas.uwm.edu.

sftp> 1s

Data My Programs Pictures
Qemu R STRESS
sftp> cd Data

sftp> 1s

CNC-EMDiff IRC
sftp> cd CNC-EMDiff/

sftp> 1s
ATAC-Seq Combined Common Misc README . md
RNA-Seq Raw adapter-stats backup. sh todo

sftp> get backup.sh

Fetching /usr/home/bacon/Data/CNC-EMDiff/backup.sh to backup.sh

backup.sh 100% 166 3.4KB/s 00:00
sftp> exit

There are also graphical programs that use SFTP protocol, such as FileZilla. The vanilla sftp command and tools like FileZilla
are convenient for small, simple transfers.

The scp command can be used to transfer files to any host that accepts ssh connections. This is a simple command with limited
capabilities.

For more sophisticated and larger transfers from Unix to Unix (including Mac and Cygwin) users, the recommended transfer
tool is rsync. The rsync command is a simple but intelligent tool that makes it easy to synchronize two directories on the
same machine or on different machines across a network. Rsync is free software and part of the base installation of many Unix
systems including macOS. On Cygwin, you can easily add the rsync package using the Cygwin Setup utility. Rsync has some
major advantages over other file transfer programs:

* Unlike GUI tools, it can be scripted to automate file transfers as part of an analysis. Scripting is covered in Chapter 4.

* If you have transferred a directory before, and only want to synchronize the destination with the latest changes, rsync will
automatically determine the differences between the two copies and only transfer what is necessary. When conducting research
that generates large amounts of data, this can save an enormous amount of time.

* If a transfer fails for any reason (which is fairly common for large transfers due to network hiccups, etc), the inherent ability to
determine the differences between two copies allows rsync to resume from where it left off. Simply run the exact same rsync
command again, and the transfer will resume.

Rsync can push (send, upload) files from the local machine to a remote machine, or pull (retrieve, download) files from a remote
machine to the local machine. The command syntax is basically the same in both cases. It’s just a matter of how you specify the
source and destination for the transfer.

The Research Computing User’s Guide 126 /574

The rsync command has many options, but the most typical usage is to create an exact copy of a directory on a remote system.
The general rsync command to push a new directory or just changes to another host would be:

shell-prompt: rsync —-av —--delete source-path [username@]hostname: [destination-path]

Example 3.33 Pushing data with rsync

The following command synchronizes the directory Project from the local machine to ~joeuser/Data/Project on
Peregrine:

shell-prompt: rsync -av —--delete Project joeuser@unixdevl.ceas.uwm.edu:Data

The general syntax for pulling files from another host is:

shell-prompt: rsync —av —--delete [username@]hostname: [source-path] destination-path

Example 3.34 Pulling data with rsync
The following command synchronizes the directory ~joeuser/Data/Project on Peregrine to ./Project on the local machine:

shell-prompt: rsync -av —--delete joeuser@Qunixdevl.ceas.uwm.edu:Data/project

Note that the only difference between a push and a pull is which argument contains "[user @ Jhostname:".

This syntax, using a single colon (:) following the host name, tells rsync to use an ssh tunnel. This means that ssh is used
to establish a secure connection, and rsync uses that connection to transfer files. Hence, all traffic, including username and
password, is encrypted. Rsync can use other connection protocols, but ssh is the most common.

If you omit "username@" from the source or destination, rsync will try to log into the remote system with your username on the
local system.

If you omit "destination-path" in an rsync push command or "source-path" in a pull command, rsync will place the source
directory under your home directory on the remote host.

The command-line flags used above have the following meanings:

-a, --archive Use archive mode, equivalent to —r1ptgoD. Archive mode copies all subdirectories recursively and preserves as
many file attributes as possible, such as ownership, permissions, etc.

-v, --verbose Verbose copy: Display names of files and directories as they are copied.

--delete Delete files and directories from the destination that do not exist in the source. Without ——delete, rsync will add and
replace files in the destination, but never remove anything. This is a good strategy when using rsync to create backups of
important files.

Caution

Note that a trailing “/” on source-path affects where rsync stores the files on the destination system. Without a trailing
“”, rsync will create a directory called “source-path” under “destination-path” on the destination host.

With a trailing “/” on source-path, destination-path is assumed to be the directory that will replace source-path on the
destination host. This feature is a somewhat cryptic method of allowing you to change the name of the directory during
the transfer. It is compatible with the behavior of the Unix cp command.

Note also that the trailing “/” only affects the command when applied to source-path. A trailing “/” on destination-path
has no effect.

The command below creates an identical copy of the directory Model in ~/Data/Model on unixdevl.ceas.uwm.edu. The
resulting directory is the same regardless of whether the destination directory existed before the command or not.

shell-prompt: rsync -av —--delete Model joeuser@Qunixdevl.ceas.uwm.edu:Data

The Research Computing User’s Guide 127 /574

The command below dumps the contents of the local Model directly into ~/Data on unixdevl, and deletes everything else in
the Data directory! In other words, it makes the destination directory ~Data identical to the local directory Mode 1.

Caution
Carelessness with rsync can be very dangerous!

shell-prompt: rsync -av —--delete Model/ joeuser@unixdevl.ceas.uwm.edu:Data

Note that if using globbing to specify files to pull from the remote system, any globbing patterns must be protected from expansion
by the local shell by escaping them or enclosing them in quotes. We want the pattern expanded on the remote system, not the
local system:

shell-prompt: rsync -av —--delete joeuser@unixdevl.ceas.uwm.edu:Data/Study\x*
shell-prompt: rsync —-av —--delete ’ joeuser@unixdevl.ceas.uwm.edu:Data/Studyx’

Example 3.35 Practice Break

If you have access to a remote Unix system, run the following commands, replacing "unixdevl.ceas.uwm.edu" with "your-
username @ your-remote-hostname".

shell-prompt: mkdir -p Temp

shell-prompt: touch Temp/templ.txt Temp/temp2.txt
shell-prompt: rsync —-av Temp unixdevl.ceas.uwm.edu:
shell-prompt: ssh unixdevl.ceas.uwm.edu ls Temp
shell-prompt: rm Temp/temp2.txt

shell-prompt: rsync —-av Temp unixdevl.ceas.uwm.edu:
shell-prompt: ssh unixdevl.ceas.uwm.edu ls Temp

Rsync can also be used to copy files locally, though creating multiple copies of a file on the same computer is generally senseless.
If you don’t have access to a remote Unix system, you can use the commands below to practice rsync.

shell-prompt: mkdir -p Temp

shell-prompt: touch Temp/templ.txt Temp/temp2.txt
shell-prompt: rsync —-av Temp Temp2

shell-prompt: 1ls Temp2

shell-prompt: rm Temp/temp2.txt

shell-prompt: rsync —-av Temp Temp2

shell-prompt: 1ls Temp2

shell-prompt: rm -r Temp2

3.15.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are three commands we can use in place of a web browser to download files? Which should we generally use in
scripts that need to be portable? Why?

Name three Unix commands that can be used to transfer files between two systems.
Describe three advantages of rsync over other file transfer tools.

What is the meaning of a trailing ’/* on the source directory?

A

Show an rsync command that makes the directory ~/Data/Studyl on unixdevl.ceas.uwm.edu identical to MyStudy
on the local machine.

6. Show an rsync command that makes the local directory My St udy identical to ~/Data/Studyl onunixdevl.ceas.uwm.edu.

The Research Computing User’s Guide 128 /574

3.16 Environment Variables

Every Unix process maintains a list of variables called the environment. When a new process is created, it inherits the environment
from the process that created it (its parent process). For typical Unix commands, the parent is usually the shell process.

All environment variables are character strings, i.e. sequences of characters. There are no other data types such as integer, float,
Boolean, etc. There are some shell features for treating variables as numbers, but their values are always stored as character
strings. For this reason, numeric operations in the shell are very inefficient.

Since the shell creates a new process whenever you run an external command, the shell’s environment can be used to pass
information to any command that you run. For example, text editors, top, Is with colorized output, and other programs that
manipulate the terminal screen, need to know what type of terminal you are using. Different types of terminals use different
magic sequences to move the cursor, change the foreground or background color, clear the screen, scroll, etc. To provide this
information, we set the shell’s environment variable TERM to the terminal type (usually "xterm"). When you run a command
from the shell, the new process inherits the shell’s TERM variable, and uses it to look up the correct magic sequences for your
terminal type.

PATH is another important environment variable which specifies a list of directories containing external Unix commands. When
you type a command at the shell prompt, the shell checks the directories listed in PATH in order to find the command you typed.
For example, when you type the Is command, the shell utilizes PATH to locate the program in /bin/1s.

The directory names within in PATH are separated by colons. A simple value for PATH might be /bin:/usr/bin:/usr/
local/bin. When you type Is, the shell first checks for the existence of /bin/1s. If it does not exist, the shell then checks
for /usr/bin/1ls, and so on, until it either finds the program or has checked all directories in PATH. If the program is not
found, the shell issues an error message such as "ls: Command not found".

The printenv shows all of the environment variables currently set in your shell process.

shell-prompt: printenv
BLOCKSIZE=K
COLORTERM=xterm-256color
DISPLAY=:0
HOME=/home/bacon
LANG=C.UTF-8
LOGNAME=bacon
PWD=/home /bacon
SHELL=/bin/tcsh
TERM=xterm-256color
USER=bacon

Setting environment variables requires a different syntax depending on which shell you are using. Most modern Unix shells are
extensions of either Bourne shell (sh) or C shell (csh), so there are only two variations of most shell commands that we need to
know for most purposes.

For Bourne shell derivatives (sh, bash, dash, ksh, zsh), we use the export command:

shell-prompt: TERM=xterm
shell-prompt: PATH=’/bin:/usr/bin:/usr/local/bin’
shell-prompt: export TERM PATH

Note There cannot be any space before or after the ’=’, for reasons that will be clarified later.

For C shell derivatives (csh, tcsh), we use setenv:

shell-prompt: setenv TERM xterm
shell-prompt: setenv PATH ’/bin:/usr/bin:/usr/local/bin’

The Research Computing User’s Guide 129/574

Note Setenv requires a space, not an ’=’, between the variable and the value.

The env can be used to alter the environment just for the invocation of one child process, rather than setting it for the current shell
process. Suppose Bob has a program called rna-trans that uses OpenMP threads (multiple subprocesses running on separate
cores to speed up the program) and he would like to run it using two cores. OpenMP normally uses all available cores, but we
can limit it by setting the environment variable OMP_NUM_THREADS.

shell-prompt: env OMP_NUM_THREADS=2 rna-trans

Here, the env command sets OMP_NUM_THREADS, and then runs rna-trans. Since the rna-trans process is a child of the env
process, it inherits the entire environment, including OMP_NUM_THREADS.

You can create environment variables with any name and value you like. However, there are many environment variable names
that are reserved for specific purposes. A few of the most common ones are listed in Table 3.14.

Name Purpose

TERM Terminal type for an interactive shell session
USER User’s login name

HOME Absolute path of the user’s home directory (~)
PATH List of directories searched for commands
LANG Character set for the local language

EDITOR User’s preferred interactive text editor

Table 3.14: Reserved Environment Variables

Example 3.36 Practice Break

shell-prompt: printenv | fgrep TERM

3.16.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is the environment in Unix?

N

What data types are available for environment variables?
Does a Unix process have any environment variables when it starts? If so, where do they come from?
What is the purpose of the TERM environment variable? What kinds of programs make use of it?

What is the purpose of the PATH environment variable? What kinds of programs make use of it?

A

Show how to set the environment variable TERM to the value "xterm" in

(a) Bourne shell (sh)

(b) Korn shell (ksh)

(c) Bourne again shell (bash)
(d) C shell (csh)

(e) T-shell (tcsh)

7. Show a Unix command that runs Is with the LSCOLORS environment variable set to "CxFxCxDxBxegedaBaGaCaD".
You may not change the LSCOLORS variable for the current shell process.

The Research Computing User’s Guide 130/574

3.17 Shell Variables

In addition to the environment, shells maintain a similar set of variables for their own use. These variables are not passed down
to child processes, and are only used by the shell.

Like environment variables, you can create shell variables with any name and value you like. However, there are many shell
variable names that are reserved for specific purposes. For example, each shell uses a special shell variable to define the shell
prompt.

In Bourne-shell derivatives, this variable is called PS1. To set a shell variable in Bourne-shell derivatives, we use a simple
assignment. The export command in the previous section actually sets a shell variable called TERM and then exports (copies) it
to the environment.

shell-prompt: PSl="peregrine: "

Note Again, there cannot be any white space before or after the '=". This is how Bourne shell and its derivatives distinguish a
variable assignment from a command. If we wrote PS1 = "unixdev1: ", the shell would think that PS1 is a command, ’=’ is the
first argument, and "unixdev1: " is the second argument. PS1 is a variable, not a command.

In C shell derivatives, the variable is called prompt, and is set using the set command:

shell-prompt: set prompt="unixdevl: "

Note The syntax for set is slightly different than for setenv. Set uses an =’ while setenv uses a space. Unlike a Bourne shell
variable assignment, the set command can tolerate white space around the ’=".

Shell prompt variables may contain certain special symbols to represent dynamic information that you might want to include in
your shell prompt, such as the host name, command counter, current working directory, etc. Consult the documentation on your
shell for details.

In all shells, you can view the current shell variables by typing set with no arguments:

shell-prompt: set

Besides special variables like PS1 and prompt, shell variables are primarily used in shell scripts, much like variables in a C or
Java program. Shell scripts are covered in Chapter 4.

3.17.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is the difference between shell variables and environment variables?

2. Show how to set the shell prompt to "Unixdevl: " in:

(a) Bourne shell
(b) C shell

3. How can you view a list of all current shell variables and their values?

The Research Computing User’s Guide 131/574

3.18 Process Control

Unix systems provide many tools for managing and monitoring processes that are already running. It is possible to have multiple
processes running under the same shell session. Such processes are considered either foreground processes or background
processes. The foreground process is simply the process that receives the keyboard input. There can be no more than one
foreground process under a given shell session, since keyboard input cannot be sent to multiple processes at once.

However, all processes, both foreground and background, are allowed to send output to the terminal at the same time. It is up
to the user to ensure that output is managed properly and not intermixed. Generally it does not make sense to have multiple
processes sending output to the same terminal, but it is not forbidden. This is another example of Unix "staying out of the way"
rather than enforcing rules that may not always be reasonable.

There are three types of tools for process management, described in the following subsections.

3.18.1 External Commands

Unix systems provide a variety of external commands that monitor or manipulate processes based on their process ID (PID). A
few of the most common commands are described below.

ps lists the currently running processes.

shell-prompt: ps [-a] # BSD
shell-prompt: ps [-e] # SYSV

ps is one of the rare commands whose options vary across different Unix systems. There are only two standards to which it
may conform, however. The BSD version uses —a to indicate that all processes (not just your own) should be shown. System
5 (SYSV) ps uses —e for the same purpose. Most modern systems accept the BSD standard. Some, such as most GNU/Linux
systems, accept either. Run man ps on your system to determine which flags should be used.

kill sends a signal to a process, which may kill the process, but could serve other purposes. We may want to kill a process after
noticing that it is producing incorrect output or has been running too long, indicating that something is wrong. The basic form of
the command is:

shell-prompt: kill [-#] PID

The PID (process ID) is often determined from the output of ps.

shell-prompt: ps

PID TT STAT TIME COMMAND
41167 0 1Is 0:00.25 tcsh
78555 0 S+ 0:01.98 fdtd

shell-prompt: kill 78555

The signal number is an integer value or signal name (minus the SIG prefix) following a -, such as =9 or ~—SIGKILL. If not
provided, the default signal sent is SIGTERM (terminate), which is signal 15. Run man signal to learn about all the signals that
can be issued with kill.

Processes can choose to ignore the SIGTERM signal, or respond in a different way than just terminating. Such processes can be
force killed using the SIGKILL (9) signal.

shell-prompt: kill -9 78555
shell-prompt: kill -KILL 78555

The pkill command will kill all processes running the program named as the argument. This eliminates the need to find the PID
first, and is more convenient for killing multiple processes running the same program.

shell-prompt: pkill fdtd

The Research Computing User’s Guide 132 /574

3.18.2 Special Key Combinations
Ctrl+c sends a SIGINT signal to the current foreground process. It is equivalent to kill -INT PID. This usually terminates the
process immediately, although it is possible that some processes will ignore the signal, as stated earlier.

Ctrl+z sends a stop (SIGSTSTP) signal to the current foreground process. The process remains in memory, but does not execute
further until it receives a continue (SIGCONT) signal (usually sent by running fg).

Ctrl+s suspends output to the terminal. This does not signal the process directly, but has the effect of blocking any processes that
are sending output, since they cannot complete the output operation.

Ctrl+q allows output to the terminal to resume, if it has been suspended by Ctrl+s.

Example 3.37 Practice Break

Run find /, then press Ctrl+s to suspend output, press Ctrl+q to resume it, press Ctrl+z to stop the process, run fg to continue the
process, and press Ctrl+c to terminate the process.

3.18.3 Shell Features for Job Control

An & at the end of any command causes the command to be immediately placed in the background. It can be brought to
the foreground using fg at any time. Normally, we do not want background processes sending any output to the terminal, so
redirection is usually used at the same time.

jobs lists the processes running under the current shell, but using the shell’s job IDs instead of the system’s process IDs.

shell-prompt: find / >& output.txt &

[1] 89227
shell-prompt: jobs
[1] + Running find / >& output.txt

fg brings a background job into the foreground. It optionally takes a shell job number as an argument. This only matters if there
are multiple background jobs running. It can now be terminated using Ctrl+c. There cannot be another job already running in
the foreground. If no job ID is provided, and multiple background jobs are running, the shell will choose which background job
to bring to the foreground. A job ID should always be provided if more than one background job is running.

shell-prompt: fg 1
find / >& output.txt
~C

shell-prompt:

bg resumes a stopped job, such as a foreground job stopped by Ctrl+z, but in the background.

shell-prompt: find / >& output.txt
/

/ .snap

/dev

/dev/log

/dev/dumpdev

/dev/cuse

Ctrl+z

shell-prompt: bg

shell-prompt:

nice runs a process with limited priority. We use this when we are not concerned about how fast the job runs and want other
processes to have more CPU time, so they can complete sooner or respond to user input more quickly.

shell-prompt: nice command

If (and only if) other processes in the system are competing for CPU time, they will get a bigger share than processes run under
nice.

The Research Computing User’s Guide 133/574

nohup allows you to run a command that will continue after you log out. Naturally, all input and output must be redirected away
from the terminal in order for this to work.

Bourne shell and compatible:

shell-prompt: nohup ./myprogram < inputfile > outputfile 2>&1

C shell and compatible:

shell-prompt: nohup ./myprogram < inputfile >& outputfile

This is often useful for long-running commands and where network connections are not reliable, or you simply don’t want to
remain logged in until it’s finished.

There are also free add-on programs such as GNU screen that allow a session to be resumed if it’s disrupted for any reason.

3.18.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is the difference between a foreground process and a background process? How many of each can be running under
a given shell process?

How do we keep the output of many background processes from mixing together?

Show a Unix command that terminates process 8210 if kill 8210 has no effect.

What can we do if we have many processes running a program called fastqe and we want to terminate all of them?

What is the easiest way to terminate the foreground process?

How can we temporarily stop the foreground process, run Is under the same shell, and then continue the previous process.
How can we pause output from processes in a terminal, inspect it, and then allow it to continue?

How can we stop the current foreground process and resume it as a background process?

© ® N 0k LN

Show a Unix command that runs ./analysis so that its process uses less CPU time than other processes.

—_
e

Show a Unix command that runs ./analysis so that it will continue running even after we log out.

3.19 Remote Graphics

3.19.1 Background

Most users will not need to run graphical applications on a remote Unix system.. If you know that you will need to use a graphical
user interface with your research software, or if you want to use a graphical editor such as eclipse or emacs on over the network,
read on. Otherwise, you can skip this section for now.

Unix uses a networked graphics interface called the X Window system. It is also sometimes called simply X11 for short. (X11
is the latest major version of the system.) X11 allows programs running on a remote Unix system to display graphics on your
screen. The programs running on the remote system are called clients, and they display graphical output by sending commands
(magic sequences) such as "draw a line from (x1,y1l) to (x2,y2)" to the X1 server on the machine where the output is to be
displayed. The computer in front of you must be running an X server process in order to display Unix graphics, regardless of
whether the client programs are running on your machine or a remote machine.

Apple’s macOS, while Unix compatible at the API and command-line, does not include X11 by default. It instead uses Apple’s
proprietary GUIL. X11 for macOS is provided by the XQuartz project: https://www.xquartz.org/. XQuartz is free open source
software (FOSS) that can be downloaded and installed in a few minutes. It should start automatically when either local or remote
X11 clients attempt to access your display, but you can also start it manually.

https://www.xquartz.org/

The Research Computing User’s Guide 134 /574

3.19.2 Configuration Steps Common to all Operating Systems

Modern Unix systems such as BSD, Linux, and macOS have most of the necessary tools and configuration in place for running
remote graphical applications. Some Unix servers may be configured without a GUL. If you want to remotely log into such a
server and run X11 programs from your desktop or laptop system, you will need to at least install the xauth package on the

remote system. This allows your system to configure X11 permissions for the remote system when you log in using ssh -X or
ssh -Y.

Debian
shell-prompt: apt install xauth

FreeBSD
shell-prompt: pkg install xauth

RHEL
shell-prompt: yum install xorg-xll-xauth

Some additional steps may be necessary on your computer to allow remote systems to access your display. This applies to all
computers running an X11 server, regardless of operating system. Additional steps that may be necessary for Cygwin systems
are discussed in Section 3.19.3.

If you want to run graphical applications on a remote computer over an ssh connection, you will need to forward your local
display to the remote system. This can be done for a single ssh session by providing the —X flag:

shell-prompt: ssh -X joe@unixdevl.ceas.uwm.edu

This causes the ssh command to inform the remote system that X11 graphical output should be sent to your local display through
the ssh connection. (This is called SSH tunneling.)

@ Caution Allowing remote systems to display graphics on your computer can pose a security risk. For example, a remote
user may be able to display a false login window on your computer in order to trick you into giving them your login and
password information.

If you want to forward X11 connections to all remote hosts for all users on the local system, you can enable X11 forwarding in
your ssh_config file (usually found in /etc or /etc/ssh) by adding the following line:

ForwardX1ll yes

Caution Do this only if you are prepared to trust all users of your local system as well as all remote systems to which
they might connect.

Some X11 programs require additional protocol features that can pose more security risks to the client system. If you get an
error message containing "Invalid MIT-MAGIC-COOKIE" when trying to run a graphical application over an ssh connection,
try using the —Y flag instead of —X to open a frusted connection.

shell-prompt: ssh -Y joe@unixdevl.ceas.uwm.edu

You can establish trusted connections to all hosts by adding the following to your ssh_config file:

ForwardX1llTrusted yes

The Research Computing User’s Guide 135/574

@ Caution This is generally considered a bad idea, since it states that every host we connect to from this computer to
should be trusted completely. Since you don’t know in advance what hosts people will connect to in the future, this is a
huge leap of faith.

If you are using ssh over a slow connection, such as home DSL/cable, and plan to use X11 programs, it can be very helpful
to enable compression, which is enabled by the —C flag. Packets are then compressed before being sent over the wire and
decompressed on the receiving end. This adds more CPU load on both ends, but reduces the amount of data flowing over the
network and may significantly improve the responsiveness of a graphical user interface.

shell-prompt: ssh -C -X joe@unixdevl.ceas.uwm.edu

Caution Using —C over a fast connection, such as a gigabit network, may actually slow down the connection, since the
CPU may not not be able to compress data fast enough to use all of the network bandwidth.

3.19.3 Graphical Programs on Windows with Cygwin

It is possible for Unix graphical applications on the remote Unix machine to display on a Windows machine with Cygwin, but
this will require installing additional Cygwin packages and performing a few configuration steps on your computer in addition to
those discussed in Section 3.19.2.

Installation

You will need to install the x11/xinit and x11/xhost packages using the Cygwin setup utility. This will install a basic X11 server
on your Windows machine.

Configuration

After installing the Cygwin X packages, there are additional configuration steps:

1. Create a working ssh_config file by running the following command from a Cygwin shell window:

shell-prompt: cp /etc/defaults/etc/ssh_config /etc

2. Then, using your favorite text editor, update the new /etc/ssh_config as described in Section 3.19.2.

3. Add the following line to .bashrc or .bash_profile (in your home directory):
export DISPLAY=":0.0"
Cygwin uses bash for all users by default. If you are using a different shell, then edit the appropriate start up script instead
of .bashrc or .bash_profile. For tesh, add the following to your . cshrcor .tcshrce:
setenv DISPLAY ":0.0"
This is not necessary when running commands from an xterm window (which is launched from Cygwin-X), but is necessary

if you want to launch X11 applications from the Cygwin terminal which is part of the base Cygwin installation, and not
X11-aware.

The Research Computing User’s Guide 136 /574

Start-up

To enable X11 applications to display on your Windows machine, you need to start the X11 server on Windows by clicking
Start — All Programs — Cygwin-X — XWin Server. The X server icon will appear in your Windows system tray to indicate
that X11 is running. You can launch an xterm terminal emulator from the system tray icon, or use the Cygwin bash terminal,
assuming that you have set your DISPLAY variable as described above.

3.19.4 Remote 3D Graphics

It is possible to run Open 3D graphical applications on remote systems as well, but performance may or may not be acceptable.
There are also numerous problems that can arise that depend on the operating system and video drivers used on each end. In
any case, OpenGL applications will require additional X11 components to be installed on both the remote machine running
the application and the display machine running the X11 server. Determining the minimal set of packages required for every
platform would be excessively difficult, so we recommend simply install the entire Xorg system on the remote system. This will
likely enable at least some OpenGL applications to run remotely. This proved sufficient to run the 3D mesh visualizer MeshLab
comfortably on a remote FreeBSD machine from a FreeBSD display. A similar application called VMD proved too sluggish to
use remotely.

Debian
shell-prompt: apt install xorg

FreeBSD
shell-prompt: pkg install xorg

You may find it easier to simply download the data files to your local machine and run the 3D graphics applications there. Per-
formance will be much better when using direct rendering, where the display is on the same machine running the 3D application.
When using indirect rendering, where the 3D application is running on a different machine than the display, sending graphics
commands over a network can be a bottleneck.

3.19.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Whatis X117
2. Does Apple’s macOS use X117 Explain.

3. What must be installed at minimum on a remote computer to allow X11 client programs to run there and display graphics
on the X11 display in front of you?

4. Show a Unix command that logs into unixdev1.ceas.uwm.edu and allows us to run remote graphical programs.

5. Show a Unix command that logs into unixdev1l.ceas.uwm.edu and allows us to run remote graphical programs over a slow
network.

6. Why is setting ForwardX11Trusted not generally a good idea?
7. What packages are needed on a Cygwin setup to enable X117

8. What alternative do you have if running a 3D graphics program remotely proves to be too complicated or slow? How will
this help?

The Research Computing User’s Guide 137 /574

Chapter 4

Unix Shell Scripting

Before You Begin
Before reading this chapter, you should be familiar with basic Unix concepts (Chapter 3) and the Unix shell (Section 3.3.3).

4.1 What is a Shell Script?

A shell script is essentially a file containing a sequence of Unix commands. A script is a type of program, but is distinguished
from other programs in that it represents programming at a higher level. C programs are made up of C statements and calls to
subprograms. Shell scripts are made up of shell commands and calls to C programs and other programs. In other words, entire
programs serve as the subprograms in a shell script. A script is a way of automating the execution of multiple separate programs
in sequence.

All Unix shells share a feature that can help us avoid this repetitive work: They don’t care where their input comes from. It is
often said that the Unix shell reads commands from the keyboard and executes them. This is not true. The shell reads commands
from any input source and executes them. The keyboard is just one of many sources of commands that can be used by the shell.
Ordinary files are also very commonly used as shell input.

Note About the only difference between a shell process reading commands from the keyboard and one reading commands
from a file is that the process reading from a file does not print a shell prompt. Otherwise, they do not behave any differently.
The commands we put in a script are exactly the same as the commands we would run interactively.

Recall from Chapter 3 that Unix systems employ device independence, which means that a keyboard is the same thing as a file
from the perspective of a Unix program. Any program that reads from a keyboard can also read the same input from a file or any
other input device.

The Unix command-line structure was designed to be convenient for both interactive use and for programming in scripts. In fact,
a Unix command looks a lot like a subprogram call. The difference is just minor syntax. A subprogram call in C encloses the
arguments in parenthesis and separates them with commas:

function_name (argl, arg2, arg3);

A Unix command is basically the same, except that it uses spaces instead of parenthesis and commas and does not use parenthesis:

command_name argl arg2 arg3

It is important to understand the difference between a "script" and a "real program", and which languages are appropriate for
each. Scripts tend to be small, usually a few lines to a few hundred lines, and do not do any significant computation of their

The Research Computing User’s Guide 138 /574

own. Instead, scripts run other programs to do most of the computational work. The job of the script is simply to automate and
document the process of running programs.

As a result, scripting languages do not need to be fast and are generally interpreted rather than compiled. Recall that interpreted
language programs run orders of magnitude slower than equivalent compiled programs. Programs written in more general-
purpose languages such as C, C++, or Java, may be quite large and may implement complex computational algorithms. Hence,
they need to be fast and as a result are usually written in compiled languages.

If you plan to use exclusively pre-existing programs such as Unix commands and/or add-on application software, and need only
automate the execution of these programs, then you need to write a script and should choose a good scripting language. If you
plan to implement your own algorithm(s) that may require a lot of computation, then you need to write a program and should
select an appropriate compiled programming language.

4.1.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is a shell script?
2. Compare and contrast Unix commands with subprogram calls in a C or Java program.
3. What is the difference between a script and a "real" program?

4. Is a scripting language a good choice for performing matrix multiplication? Why or why not?

4.2 Why Write Shell Scripts?

4.2.1 Efficiency and Accuracy

Any experienced computer user knows that we often end up running basically the same sequence of commands many times over.
Typing the same sequence of commands over and over is a waste of time and highly prone to errors.

Hence, if we’re going to run the same sequence of commands more than once, we don’t need to retype the sequence each time.
The shell can read the commands from anywhere, and the keyboard is about the worst possible choice in this situation. We can
put the same sequence of commands into a text file once and tell the shell to read the commands from the file as many times as
we want, which is much easier than typing them all repeatedly, and eliminates the need to remember the details of the commands.

Rule of Thumb
If you're not completely certain that you will never need to do it again, script it.

In theory, Unix commands could also be piped in from another program or read from any other device attached to a Unix system,
although in practice, they usually come from the keyboard or a script file.

4.2.2 Documentation

There is another very good reason for writing shell scripts in addition to saving us a lot of redundant typing. A shell script is
the ultimate documentation of the work we have done on a computer, ensuring repeatability of the analysis, which is one of the
cornerstones of science. By writing a shell script, we record the exact sequence of commands needed to reproduce results, in
perfect detail. Hence, the script serves a dual purpose of automating and documenting our processes.

Developing a script has a ratchet effect on your knowledge. Once you add a command to a script, you will never again have to
figure out how to do the same thing. Clear documentation of our work flow is important in order to justify research funding and
to be able to reproduce results months or years later.

The Research Computing User’s Guide 139/574

Rule of Thumb

Scientists and Unix users should never find themselves trying to remember how they did something. Script it the first time
and you will never be in this situation. Unix makes it easy to automate our analyses, so nobody will waste time struggling to
reproduce results.

Imagine that we instead decided to run our sequence of commands manually and document what we did in a word processor.
First, we’d be typing everything twice: Once at the shell prompt and again into the document. We would want to add the
exact command with all flags and data arguments in the document to ensure that we can reproduce the results. It is also very
inconvenient for people to read a document and type in the commands contained in it. Why not just give them a script that they
can easily run?

The process of typing the same commands each time would be painful enough, but to document it in detail while we do it would
be distracting. We’d also have to remember to update the document every time we type a command differently. This is hard to
do when we’re trying to focus on getting results.

Writing a shell script allows us to stay focused on perfecting the process. Once the script is finished and working perfectly, we
have already documented the process perfectly. We can and should add comments to the script to make it more readable, but
even without comments, the script itself preserves the process in detail.

Many experienced users will never run a data processing command from the keyboard. Instead, they only put commands into a
script. They run, tweak, and re-run the script until it’s working perfectly.

An important part of documenting code is making the code self-documenting. When writing shell scripts, using long options
in commands such as zip --preserve-case instead of zip -C makes the script much easier to read. While -C is less typing and
may be preferable when running zip interactively many times, we only have to type ——preserve-case once when writing
the script, so the laziness of using —C doesn’t pay here. It just makes us waste time later looking up their meaning, whereas the
meaning of the long option may be obvious.

If you use an integrated development environment, such as APE, testing the script is a simple matter of pressing F5. We do not
have to exit the editor (as we would when using nano) and we don’t lose our place in the script.

4.2.3 Why Unix Shell Scripts?

There are many scripting languages to choose from, including those used on Unix systems, like Bourne shell, C shell, Perl,
Python, etc., as well as some languages confined to other platforms like Visual Basic (Microsoft Windows only) and AppleScript
(Apple only).

Note that the Unix-based scripting languages can be used on any platform, including Microsoft Windows (with Cygwin, for
example) and Apple’s Mac OS X, which is Unix-compatible by design. Once you learn to write Unix shell scripts, you're

prepared to do scripting on any computer, without having to learn another language. There is little reason not to use Unix shell
scripts in place of proprietary scripting languages.

4.2.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Describe three reasons for writing shell scripts instead of running commands from the keyboard.
What feature of Unix makes scripting so easy to implement and use? Explain.

When should we run commands at the shell prompt and when should we put them in a script?
What are three advantages of a script over a document explaining the commands to run?

What type of flag arguments should we use in scripts? Why?

AN i

What is the advantage of Unix scripting languages over others such as Visual Basic or AppleScript? What is the disadvan-
tage?

The Research Computing User’s Guide 140/ 574

4.3 Which Shell?

4.3.1 Common Shells

When writing a Unix shell script, there are two families of scripting languages to choose from: Bourne shell and C shell. These
were the first two mainstream shells for Unix, and all mainstream shells that have come since are compatible with one or the
other.

Some of most popular new shells derived from Bourne shell are Bourne again shell (bash), Debian Almquist Shell (dash),
KornShell (ksh), and Z shell (zsh). T shell (TENEX C shell, tcsh) is the only mainstream extension of C shell.

* Bourne shell family

Bourne shell (sh)

Bourne again shell (bash)
Debian Almquist shell (dash)
Korn shell (ksh)

Z-shell (zsh)

¢ C shell family

C shell (csh)
T shell (tcsh)

Both Bourne shell and C shell have their own pros and cons. C shell syntax is cleaner, more intuitive, and more similar to the C
programming language (hence the name C shell). However, C shell lacks some features such as subprograms (although C shell
scripts can run other C shell scripts, which is arguably a better approach in many situations).

Bourne shell is used almost universally for Unix system scripts, while C shell is fairly popular in some areas of scientific research.
Every Unix system has a Bourne shell in /bin/sh. All other shells may need to be installed via a package manager on some
systems. Hence, using POSIX Bourne shell syntax (not bash, ksh, or zsh) for scripts maximizes their portability by ensuring that
they will run on any Unix system.

If your script contains only external commands, then it actually won’t matter which shell runs it. However, most scripts utilize
the shell’s internal commands, control structures, and features like redirection and pipes, which differ among shells.

More modern shells such as bash, ksh, and tcsh, are backward-compatible with Bourne shell or C shell. This means that shells
such as bash and dash can run POSIX Bourne shell scripts. In fact, on some systems, sh is just a link to bash or dash. The
extended shells add some additional scripting constructs and convenient interactive features. Most of the advantages of shells
such as bash and tesh are in the interactive features, like auto-completion and command editing. The added constructs for
scripting are nice, but do not make scripting significantly easier.

4.3.2 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are the two families of shell programs?
2. State one advantage of Bourne shell for scripting and one advantage of C shell.
3. What is the advantage of using POSIX Bourne shell for scripting rather than an extended shell such as bash or dash?

4. What is the disadvantage of using POSIX Bourne shell for scripting rather than an extended shell such as bash or dash?

The Research Computing User’s Guide 141 /574

4.4 Writing and Running Shell Scripts

A shell script is a simple text file and can be written using any Unix text editor. Some discussion of Unix text editors can be
found in Section 3.10.4.

@ Caution Recall from Section 3.9.1 that Windows uses a slightly different text file format than Unix. Hence, editing Unix
shell scripts in a Windows editor can be problematic. Users are advised to do all of their editing on a Unix machine
rather than write programs and scripts on Windows and transfer them to Unix.

Shell scripts often contain very complex commands that are wider than a typical terminal window. A command can be continued
on the next line by typing a backslash (\) immediately before pressing Enter. A backslash as the very last character on a line
(not even white space may follow it) is known as a continuation character. This feature is included in all Unix shells and other
languages such as Python.

printf "%s %s\n" "This command is too long to fit in a single 80-column" \
"terminal window, so we break it up with a backslash.\n"

It’s a good idea to name the script with a file name extension that matches the shell it uses. This just makes it easier to see which
shell each of your script files use. Table 4.1 shows conventional file name extensions for the most common shells. However, if a
script is to be installed into the PATH so that it can be used as a regular command, it is usually given a name with no extension.
Most users would rather type "cleanup” than "cleanup.bash".

Caution A common mistake is to use the wrong file name extension on a shell script, such as naming the file script.
sh when it uses bash features. On some systems such as Redhat Enterprise Linux, sh is actually a link to bash, so
this will work fine. However, this causes problems on systems where sh is not bash, such as BSD and Debian Linux.
If your script uses bash features, it should have a ".bash" file name extension, not ".sh".

Shell Extension
Bourne Shell .sh

C shell .csh
Bourne Again Shell .bash

T shell .tcsh

Korn Shell ksh
Z-shell .zsh

Table 4.1: Conventional script file name extensions

Like all programs, shell scripts should contain comments to explain what the commands in it are doing. In all Unix shells,
anything from a ’# character to the end of a line is considered a comment and ignored by the shell.

Print the name of the host running this script
hostname

The Research Computing User’s Guide 142 /574

Practice Break
Using your favorite text editor, enter the following text into a file called hello. sh.

1. The first step is to create the file containing your script, using any text editor, such as nano:

shell-prompt: nano hello.sh

Once in the text editor, add the following text to the file:
printf "Hello!\n"

printf "I am a script running on a computer called ‘hostname‘\n"

After typing the above text into the script, save the file and exit the editor. If you are using nano, the menu at the bottom
of the screen tells you how to save (write out, Ctrl+0) and exit (Ctrl+x).

2. Once we've written a script, we need a way to run it. A shell script is simply input to a shell program. Like many Unix
programs, shells take their input from the standard input by default. We could, therefore, use redirection to make it read
the file via standard input:

shell-prompt: sh < hello.sh

Shells can also take an input file as a data argument:

shell-prompt: sh hello.sh

However, Unix shells and other scripting languages provide a more convenient method of indicating what program should
interpret them. If we add a special comment, called a shebang line to the top of the script file and make the file executable using
chmod, the script can be executed like a Unix command. We can then simply type its name at the shell prompt, and another shell
process will start up and run the commands in the script. If the directory containing such a script is included in $PATH, then the
script can be run from any CWD just like Is, cp, etc.

The shebang line consists of the string "#!" followed by the full path name of the command that should be used to execute the
script, or the path /usr/bin/env followed by the name of the command. For example, both of the following are valid ways to
indicate a Bourne shell (sh) script, since /bin/sh is the Bourne shell command.

#!/bin/sh
#!/usr/bin/env sh

When you run a script simply by typing its file name at the Unix command-line, a new shell process is created to interpret the
commands in the script. The shebang line specifies which program is invoked for the new shell process that runs the script.

Note The shebang line must begin at the very first character of the script file. There cannot even be blank lines above it or white
space to the left of it. The "#!" is an example of a magic number. Many files begin with a 16-bit (2-character) code to indicate
the type of the file. The "#!" indicates that the file contains some sort of interpreted language program, and the characters that
follow will indicate where to find the interpreter.

The /usr/bin/env method is used for add-on shells and other interpreters, such as Bourne again shell (bash), Korn shell (ksh),
and Perl (perl). These interpreters may be installed in different directories on different Unix systems. For example, bash is
typically found in /bin/bash on Linux systems, /usr/local/bin/bash on FreeBSD systems, /usr/pkg/bin/bash on NetBSD, and
fusr/bin/bash on SunOS. The T shell is found in /bin/tcsh on FreeBSD and CentOS Linux and in /usr/bin/tcsh on Ubuntu
Linux.

In addition, users of Redhat Enterprise Linux (RHEL) and derivatives may want to install a newer version of bash under a
different prefix, using pkgsrc or another add-on package manager. RHEL is a special kind of Linux distribution built on an older

The Research Computing User’s Guide 143 /574

snapshot of Fedora Linux for the sake of long-term binary compatibility and stability. As such, it comes with older versions of
bash and other common tools.

The env command is found in /usr/bin/env on virtually all Unix systems. Hence, this provides a method for writing shell
scripts that are portable across Unix systems (i.e. they don’t need to be modified to run on different Unix systems).

Note

Every script or program should be tested on more than one platform (e.g. BSD, Cygwin, Linux, Mac OS X, etc.) immediately, in
order to shake out bugs before they cause problems.

The fact that a program works fine on one operating system and CPU does not mean that it's free of bugs.

By testing it on other operating systems, other hardware types, and with other compilers or interpreters, you will usually expose
bugs that will seem obvious in hindsight.

As a result, the software will be more likely to work properly when time is critical, such as when there is an imminent deadline
approaching and no time to start over from the beginning after fixing bugs. Encountering software bugs at times like these is
very stressful and usually easily avoided by testing the code on multiple platforms in advance.

Bourne shell (sh) is present and installed in /bin on all Unix-compatible systems, so it’s safe to hard-code #!/bin/sh is the
shebang line.

C shell (csh) is not included with all systems, but is virtually always in /bin if present, so it is generally safe to use #!/bin/csh as
well.

For all other interpreters it’s best to use #!/usr/bin/env.

#!/bin/sh (OK and preferred)
#!/bin/csh (Usually OK)

#!/bin/bash (Bad idea: Not portable)
#!/usr/bin/perl (Bad idea: Not portable)
#!/usr/bin/python (Bad idea: Not portable)
#!/bin/tcsh (Bad idea: Not portable)
#!/usr/bin/env bash (This is portable)
#!/usr/bin/env tcsh (This is portable)
#!/usr/bin/env perl (This is portable)
#!/usr/bin/env python (This is portable)

By default, a shell script will continue to run after one of the commands in the script fails. We usually do not want this behavior.
We can tell the script to exit on errors by adding a —e to the command line:

#!/bin/sh -e
#!/bin/csh -e

Unfortunately, we cannot pass arguments to the interpreter following env in the shebang line.

#!/usr/bin/env bash -e # This will fail

With Bourne family shells, we can add command line options after the fact using the internal set command. We can also disable
any command line option by changing the -’ to a ’+’. It may seem counterintuitive to enable something with ’-” and disable it
with ’+’, but it is what it is.

The Research Computing User’s Guide 144 /574

#!/usr/bin/env bash

Set exit-on-error as if bash had been run with -e
set —e

Disable exit-on-error
set +e

Example 4.1 A Simple Bourne Shell Script

Suppose we want to write a script that is always executed by bash, the Bourne Shell. We simply need to add a shebang line
indicating the path name of the bash executable file.

shell-prompt: nano hello.sh

Enter the following text in the editor. Then save the file and exit back to the shell prompt.

#!/bin/sh -e

A simple command in a shell script
printf "Hello, world!\n"

Now, make the file executable and run it:

shell-prompt: chmod a+rx hello.sh # Make the script executable
shell-prompt: ./hello.sh # Run the script as a command

Example 4.2 A Simple C-shell Script

Similarly, we might want to write a script that is always executed by csh, C Shell. We simply need to add a shebang line indicating
the path name of the csh executable file.

shell-prompt: nano hello.csh

#!/bin/csh -e

A simple command in a shell script
printf "Hello, world!\n"

shell-prompt: chmod a+rx hello.csh # Make the script executable
shell-prompt: ./hello.csh # Run the script as a command

Note

The shebang line in a script is ignored when you explicitly run a shell and provide the script name as an argument or via
redirection. The content of the script will be interpreted by the shell that you have manually invoked, regardless of what the
shebang line says.

This might not work, since sh will not recognize
C shell syntax.
shell-prompt: sh hello.csh

Scripts that you create and intend to use regularly can be placed in your PATH, so that you can run them from anywhere. A
common practice among Unix users is to create a directory called ~/bin, and configure the login environment so that this
directory is always in the PATH. Programs and scripts placed in this directory can then be used like any other Unix command,
without typing the full path name.

The Research Computing User’s Guide 145/574

You can greatly speed up the script development process by using an Integrated Development Environment, or IDE, instead of
a simple text editor. Using an IDE, such as APE, eliminates the need to exit the editor (or use another shell window) to run
the script. In APE, we can simply press F5 or type Esc followed by ’r’ to run the script. When it finishes, we are still in the
editor at the same spot in the script. An IDE is also specialized for writing programs, and hence provides features such as syntax
colorization, edit macros, etc.

shell-prompt: ape hello.sh

CoreTerminal

Pliluse

lock Comment
ase

xit codes

or loop
Usaf§e

hen
ZBS template
oot only
Fllnction
ljhile loop
New Jain

Saved hello.sh: 4 lines, 156 characters. <insert>= 4 25

Figure 4.1: Editing a script in APE

4.4.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Is it wise to write Unix shell scripts in a Windows editor and then upload them to a Unix system? Why or why not?
2. How can we keep very long commands tidy in a script?

3. What rules does Unix enforce regarding file name extensions on shell scripts?

4. What problems might arise if we write a bash script and give it a ".sh" file name extension?

5. Why are comments important in shell scripts?

6. Show three ways to run a Bourne shell script called analysis. sh and any requirements they entail.

7. What shebang line should be used for Bourne shell scripts? For Bourne again shell scripts? For Python scripts? Explain.

The Research Computing User’s Guide 146 /574

8. How to we make a shell script exit immediately when any command fails?

9. What happens if we run a script as an argument to a shell command that does not match the intended shell, such as csh
analysis.sh?

10. What are the advantages of using an IDE instead of a simple text editor like nano?

4.5 Sourcing Scripts

Normally, running a shell script starts a new shell process, often running a different shell than our interactive shell. For example,
our login shell may be tesh or bash, and a script may be run by sh because it starts with *#!/bin/sh -e".

In some circumstances, we might not want a script to be executed by a separate shell process. For example, suppose we just
made some changes to our .cshrc or .bashrc file that would affect PATH or some other important environment variable, or the
prompt shell variable that describes our shell prompt.

If we run the start up script by typing ~/.cshre or ~/.bashre, a new shell process will be started which will execute the commands
in the script and then terminate. Commands in the script may alter the shell variables and environment variables of the child
process, but the parent process (the process from which you invoked the script), will be unaffected.

In order to make the "current" shell process run the commands in a script, we must source it. This is done using the internal shell
command source in all shells except Bourne shell, which uses ".". Bourne shell derivatives support both "." and "source".

Hence, to source . cshrc, we would run

shell-prompt: source ~/.cshrc

To source .bashrc, we would run

shell-prompt: source ~/.bashrc

or

~/ .bashrc

To source . shrc from a basic Bourne shell, we would have to run

~/.shrc

4.5.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What happens when we run a script by simply typing its name at the shell prompt?
2. How does sourcing a script differ from running it the usual way?

3. Under what circumstances would we want to source a script rather than run it under a child shell process?

4.6 Shell Start-up Scripts

When you start a new shell process (e.g. log in via ssh or open a new terminal window), the shell process may source one or
more special scripts called start up scripts.

Which scripts are sourced depends on how the shell is started. Non-interactive Bourne shell family processes, such as those used
to execute shell scripts, do not source any start up scripts by default.

In contrast, C shell scripts by default source ~/.cshrc if it exists. You can override this in C-shell scripts by invoking the shell
with - £ as follows:

The Research Computing User’s Guide 147 /574

#!/bin/csh -ef

Shell processes considered login shells will source additional scripts that non-login shells do not. For example, a shell process
started remotely via ssh is a login shell. A shell process started when opening a new terminal window in a Unix GUI is not a
login shell.

The man page for your shell has all the details about which start up scripts are sourced and when. Table 4.2 provides a brief
summary.

Script Shells that use it Executed by

/etc/profile, ~/.profile Bourne shell family Login shells only

File ngrped by $ENV (typically .shrc Bourne shell family All 1nter.actlve shells (login and

or .shinit) non-login)

~/.bashrc Bourne again shell only Al 1nter.act1ve shells (login and
non-login)

~/.bash_profile Bourne again shell only Login shells only

~/ kshre Korn shell All 1nter.actlve shells (login and
non-login)

/etc/csh.login, ~/.login C shell family Login shells only

/etc/csh.cshre, ~/.cshre C shell family All shell processes

~/.tcshre T shell All shell processes

Table 4.2: Shell Start Up Scripts
Start up scripts are used to configure your PATH and other environment variables, set your shell prompt and other shell features,
create aliases for your favorite commands, and anything else you want done when you start a new shell.

One of the most common alterations users make to their start up script is editing their PATH to include a directory containing
their own programs and scripts. Typically, this directory is named ~/bin, but you can name it anything you want. To set up
your own ~/bin to store your own scripts and programs, do the following:

1. shell-prompt: mkdir ~/bin

2. Edit your start up script and add ~/bin to the PATH.
If you’re using Bourne again shell, you can add ~/bin to your PATH by adding the following to your .bashrc:

export PATH=${PATH}:~/bin

If you’re using T shell, add the following to your .cshrcor .tcshrc:

setenv PATH ${PATH}:~/bin

If you’re using a different shell, see the documentation for your shell to determine the correct start up script and command
syntax.

Caution

Adding ~/bin before (left of) ${PATH} will cause your shell to look in ~/bin before looking in the standard
directories such as /bin and /usr/bin. Hence, if a binary or script in ~/bin has the same name as another
command, the one in ~/bin will be executed. This is considered a security risk, since users could be tricked
into running a Trojan-horse Is or other common command if care is not taken to protect ~ /bin from modification.
Hence, adding to the tail (right side) of PATH is usually recommended, especially for inexperienced users.

3. Update the PATH in your current shell process by sourcing the start up script, or by logging out and logging back in.

There is no limit to what your start up scripts can do, so you can use your imagination freely and find ways to make your Unix
shell environment easier and more powerful.

The Research Computing User’s Guide 148 /574

4.6.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What are startup scripts?
2. Are startup scripts sourced by shell processes running other scripts?

3. What are startup scripts used for?

4.7 String Constants and Terminal Output

Although Unix shells make no distinction between commands entered from the keyboard and those input from a script, there are
certain shell features that are meant for scripting and not convenient or useful to use interactively. Many of these features will
be familiar to anyone who has done computer programming. They include constructs such as comments, conditionals (e.g. if
commands) and loops. The following sections provide a very brief introduction to shell constructs that are used in scripting, but
generally not used on the command line.

A string constant in a shell script is anything enclosed in single quotes (this is a string’) or double quotes ("this is also a string").

Unlike most programming languages, text in a shell scripts that is not enclosed in quotes and does not begin with a ’$’ or other
special character is also interpreted as a string constant. Hence, all of the following are the same:

shell-prompt: 1ls /etc
shell-prompt: 1ls "/etc"
shell-prompt: 1ls ' /etc’

Most programming languages would interpret the ’/° as a division operator and etc as a variable name. As you can see, Unix
shell languages differ from general purpose languages significantly.

If a string contains white space (spaces or tabs), then it will be seen as multiple separate strings, unless we explicitly state
otherwise by enclosing the string in quotes or escaping every white space character. The last example below will not work
properly, since "Program’ and *Files’ are seen as separate arguments:

shell-prompt: cd ’'Program Files’ # One directory name
shell-prompt: cd "Program Files" # One directory name
shell-prompt: cd Program\ Files # One directory name
shell-prompt: cd Program Files # Two directory names

Note

Special sequences such as ’\n’, which represents the newline character, must be enclosed in quotes or escaped. Otherwise,
the '\’ is seen as escaping the 'n’, which has no effect. Remember that '\ tells the shell to not to interpret the next character
as special. This is useful behind a special character such as ™ or [, but 'n’ has no special meaning in the first place, so a '\’
before it will not alter its interpretation.

#!/bin/sh -e
printf Hello\n

printf "Hello\n"
printf Hello\\n

HellonHello
Hello

The Research Computing User’s Guide 149 /574

Output commands are only occasionally useful at the interactive command line. We may sometimes use them to take a quick
look at a variable such as $PATH. Output commands are far more useful in scripts, and are used in the same ways as output
statements in any programming language.

The echo command is commonly used to output text to the terminal:

shell-prompt: echo ’"Hello!’

Hello!

shell-prompt: echo S$PATH

/usr/local/bin:/home/bacon/scripts:/home/bacon/bin:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local <
/sbin

However, echo should be avoided, since it is not portable across different shells and even the same shell on different Unix systems.
There are many different implementations of echo commands, some internal to the shell and some external programs. Different
implementations of echo use different command-line flags and special characters to control output formatting. In addition, the
output formatting capabilities of echo commands are extremely limited.

The printf command supersedes echo. It has a rich set of capabilities similar to the print £ () function in the standard C library
and in Java. The printf command is specified in the POSIX.2 standard, so its behavior is largely the same on all Unix systems.
Printf is an external command, so it is independent of which shell you are using. Unlike echo, it does not add a newline character
by default.

shell-prompt: printf 'Hello!\n’
Hello!
The general syntax of a printf command is as follows:

printf format-string [arguments]

The format-string contains literal text and a format specifier to match each of the arguments that follows. Each format specifier
begins with a *%’ and is followed by symbols indicating the format in which to print the argument.

The format string can be the sole argument to printf, as long as it does not contain any specifiers. Otherwise, there must be
exactly one argument following the format string to match each specifier.

Specifier Output

%s String

%?20s String right-justified in a 20-character space
%-20s String left-justified in a 20-character space

Table 4.3: Printf Format Specifiers

The printf command also recognizes most of the same special character sequences as the C printf() function:

Sequence Meaning

\n Newline (move down to next line)

\r Carriage Return (go to beginning of current line)
\t Tab (go to next tab stop)

Table 4.4: Special Character Sequences

#!/bin/sh -e

printf ’%s.\n’ ’'This is default format’
printf ’%50s.\n’ 'This is right-justified’
printf ’$-50s.\n’ ’'This is left-justified’

This is default format.
This is right-justified.
This is left-justified

The Research Computing User’s Guide 150/ 574

There are many other format specifiers and special character sequences. For complete information, run man printf.

Any program that prints error messages should send them to the standard error, not the standard output. The printf command
always outputs to the standard output, but we can work around it using redirection to /dev/stderr.

printf 'Error: Input must be a number.\n’ >> /dev/stderr

Practice Break
Write a shell script containing the printf command above and run it. Write the same script using two different shells, such as
Bourne shell and C shell. What is the difference between the two scripts?

4.7.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. How does the Unix shell interpret the character sequence firstname? How would it be interpreted by most general
purpose programming languages?

2. Show three ways to make the shell see the character sequence A1 fred E. Neumann as a single string rather than three
strings. Note that there are two spaces after the period.

3. What is the output of the following statement? How do we make it interpret the \n as a newline?

#!/bin/sh -e

printf \$15x3=\$45\n

4. What are some of the problems with the echo command? What is the solution?
5. Show a printf statement that prints the number 32,767, right-justified in a field of 10 columns.

6. Show a printf statement that prints the error message "Error: Invalid data found in column 2 of input."” to the standard
error.

4.8 Shell and Environment Variables

Variables are essential to any programming language, and scripting languages are no exception. Variables are useful for user
input, control structures, and for giving descriptive names to commonly used constants, such as numbers and long path names.

Recall from Section 3.16 that every Unix process has a set of string variables called the environment, which are handed down
from the parent process in order to communicate important information. For example, the TERM variable, which identifies the
type of terminal a user is using, is used by programs such as top, vi, nano, and more, that need to manipulate the terminal screen
(move the cursor, highlight characters, etc.) The TERM environment variable is usually set by the shell process so that all of the
shell’s child processes (those running vi, nano, etc.) will inherit the variable.

Unix shells also keep another set of variables called shell variables that are not part of the environment. These variables are used
only for the shell’s purposes and are not inherited child processes. The shell variables are structured exactly the same way as the
environment variables, each having a name and a value, which is a character string.

There are some special shell variables such as "prompt" and "PS1" (which control the appearance of the shell prompt in C shell
and Bourne shell, respectively). Most shell variables, however, are defined by the user for use in scripts, just like variables in any
other programming language.

Environment and shell variable names must begin with a letter or an underscore (_), which is optionally followed by more letters,
underscores, or digits. The regular expression defining the naming rules for environment variables ’[A-Za-z_][A-Za-z0-9_]*’.
Environment variable names traditionally use upper case for all letters.

The Research Computing User’s Guide 151 /574

4.8.1 Assignment Statements

In all Bourne Shell derivatives, a shell variable is created or modified using the same simple syntax:

varname=value

Caution There can be no space around the ’=". If there were, the shell would think that 'varname’ is a command, and
'=" and 'value’ are arguments. A variable assignment is distinct from a command in the Bourne shell family.

bash-4.2$ name = Fred

bash: name: command not found
bash-4.2$ name=Fred

bash-4.2$ printf "$name\n"
Fred

When assigning a string that contains white space, it must be enclosed in quotes or all white space characters must be escaped:
#!/bin/sh -e
name=Joe Sixpack # Error

name="Joe Sixpack" # OK
name=Joe\ Sixpack # OK

C shell and T shell use the internal set command for assigning variables. Since a variable assignment is a command in C shell,
we can have white space around the ’=’ if we wish:

#!/bin/csh -ef

set name = "Joe Sixpack"

@ Caution Note that Bourne family shells also have a set command, but it has a completely different meaning, so take
care not to get confused. The Bourne set command is used to enable or disable shell command-line options, not
variables.

In many languages such as C, Fortran, or Java, we must define variables before we can use (reference) them:

int c;
double x;
c = 5;

x = 1.4;

Unix shell variables need not be defined before they are assigned a value. Defining variables is unnecessary, since there is only
one data type in shell scripts. All shell variables are character strings. There are no integers, Booleans, enumerated types, or
floating point variables, although there are some facilities for interpreting shell variables as integers, assuming they contain only
digits.

In Bourne shell, we can perform basic integer arithmetic by enclosing an expressionin $ (()):

c=$(($c + 1))

In C shell, we use the @ command, which is a special form of set that enables basic arithmetic:

The Research Computing User’s Guide 152 /574

@ c = %c +1

Most shells are not capable of handling real numbers. Only integers are supported, mainly for the sake of loop counters and a few
other purposes. If you must manipulate real numbers in a shell script, you could accomplish it by piping an expression through
be, the Unix arbitrary-precision calculator:

printf "243.9 x S$variable\n" | bc -1

Such facilities are very inefficient compared to other languages, however, partly because shell languages are interpreted, not com-
piled, and partly because they must convert each string to a number, perform arithmetic, and convert the results back to a string.
Shell scripts are meant to automate sequences of Unix commands and other programs, not perform numerical computations.

In Bourne shell family shells, environment variables are set by first setting a shell variable of the same name and then exporting
it to the environment:

TERM=xterm
export TERM

Modern Bourne shell derivatives such as bash (Bourne Again Shell) can do this in one command:

export TERM=xterm

Note Exporting a shell variable permanently tags it as exported. Any future changes to the variable’s value will automatically be
copied to the environment. This type of linkage between two objects is very rare in programming languages: Usually, modifying
one object has no effect on any other.

C shell derivatives use the setenv command to set environment variables:

setenv TERM xterm

Caution Note that unlike the 'set’ command, setenv requires white space, not an '=’, between the variable name and
the value.

Note Since the C shell allows us to create environment variables separate from shell variables, C shell variables traditionally
use all lower-case letters, while environment variables use all upper-case. This makes it easier to read scripts that access both
shell and environment variables.

C shell variables are not linked to environment variables, except for some special variables, like path which is automatically
exported to the environment variable PATH each time is it updated.

4.8.2 Variable References

To reference a shell variable or an environment variable in a shell script, we must precede its name with a ’$’. The ’$’ tells the
shell that the following text is to be interpreted as a variable name rather than a string constant. The variable reference is then
expanded, i.e. replaced by the value of the variable. This occurs anywhere in a command except inside a string bounded by single
quotes or following an escape character (\), as explained in Section 4.7. These rules are basically the same for all Unix shells.

The Research Computing User’s Guide

153 /574

#!/bin/sh -e

name="Joe Sixpack"

printf
printf
printf
printf

Output:

Hello,
Hello,
Hello,
Hello,

"Hello,
"Hello,
"Hello,
"Hello,

name !

name ! \n"
Sname!\n"
Sname!\n’
\$name!\n"

Joe Sixpack!

Sname'!
Sname!

Not a variable reference
References variable "name"
Not a variable reference
Not a variable reference

Practice Break
Type in and run the following scripts:

#!/bin/sh -e

first_name="Bob"
last_name="Newhart"

printf

no

CSH version:

#!/bin/csh -ef

set first_name = "Bob"

set last_name =

"Newhart"

%s %s 1s a superhero.\n" S$first_name $last_name

printf "%$s %s is a superhero.\n" $first_name $last_name

Note

If both a shell variable and an environment variable with the same name exist, a normal variable reference will expand the shell
variable.
In Bourne shell derivatives, a shell variable and environment variable of the same name always have the same value, since

exporting is the only way to set an environment variable. Hence, it doesn’t really matter which one we reference.

In C shell derivatives, a shell variable and environment variable of the same name can have different values. If you want to

reference the environment variable rather than the shell variable, you can use the printenv command:

Darwin heron

Darwin heron

Darwin heron

Sue

Darwin heron

Bob

There are some

bacon ~ 319:
bacon ~ 320:
bacon ~ 321:

bacon ~ 322:

set name=Sue
setenv name Bob
echo S$name

printenv name

special C shell variables that are automatically linked to environment counterparts. For example, the shell
variable path is always the same as the environment variable PATH. The C shell man page is the ultimate source for a list of
these variables.

If a variable reference is immediately followed by a character that could be part of a variable name, we could have a problem:

#!/bin/sh -e

name="Joe Sixpack"
"Hello to all the $names of the world!\n"

printf

The Research Computing User’s Guide 154 /574

Instead of printing "Hello to all the Joe Sixpacks of the world", the printf will fail because there is no variable called "names".
In Bourne Shell derivatives, non-existent variables are treated as empty strings, so this script will print "Hello to all the of the
world!". C shell will print an error message stating that the variable "names" does not exist.

We can correct this by delimiting the variable name in curly braces:

#!/bin/sh -e

name="Joe Sixpack"
printf "Hello to all the ${name}s of the world!\n"

This syntax works for all shells. Some shell programmers might insist that all variable references should use {}. My philosophy
is that if something is not necessary or at least helpful, then typing it is a waste of time and added clutter.

4.8.3 Using Variables for Code Quality

Another very good use for shell variables is in eliminating redundant string constants from a script. Suppose we have a path
name referenced multiple times in a script:

#!/bin/sh -e
output_value=‘myprog"

printf "Soutput_value\n" >> Run2/Output/results.txt
more Run2/Output/results.txt
cp Run2/Output/results.txt latest-results.txt

If for any reason the relative path Run2/Output/results.txt should change, then you’ll have to search through the script
and make sure that all instances are updated. This is a tedious and error-prone process, which can be avoided by using a variable:

#!/bin/sh -e
output_file="Run2/Output/results.txt"

output_value=‘myprog"

printf "Soutput_value\n" >> Soutput_file
more S$output_file

cp $output_file latest-results.txt

In the second version of the script, if the path name of results.txt changes, then only one change must be made to the script.
Avoiding redundancy is one of the primary goals of any good programmer.

In a more general programming language such as C or Fortran, this role would be served by a constant, not a variable. However,
shells do not support constants, so we use a variable for this.

In most shells, a variable can be marked read-only in an assignment to prevent accidental subsequent changes. Bourne family
shells use the readonly command for this, while C shell family shells use set -r.

#!/bin/sh -e

readonly output_file="Run2/Output/results.txt"
output_value='‘myprog"*

printf "Soutput_value\n" >> Soutput_file

more Soutput_file
cp Soutput_file latest-results.txt

#!/bin/csh -ef

set -r output_file = "Run2/Output/results.txt"

The Research Computing User’s Guide 155/574

set output_value=‘myprog"'

printf "Soutput_value\n" >> Soutput_file
more S$output_file

cp $Soutput_file latest-results.txt

4.8.4 Output Capture

Output from a command can be captured and used as a string in the shell environment by enclosing the command in back-quotes
(). In Bourne-compatible shells, we can also use $() in place of back-quotes.

#!/bin/sh -e

Using output capture in a command
printf "Today is %s.\n" ‘date‘
printf "Today is %s.\n" $(date)

Using a variable. If using the output more than once, this will
avoid running the command multiple times.

today=‘date’

printf "Today is %s\n" S$today

4.8.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is the convention for naming C shell variables to help distinguish them from environment variables?

2. Can we use any name we want for a shell variable in our script?

3. What rules do shell and environment variable names need to follow?

4. Show how to assign the value "Alfred E. Neumann" to the shell variable full_name in Bourne shell and in C shell.
5. How do we declare a shell variable? Explain.

What is the relationship between a given shell variable and an environment variable with the same name? Explain.

Are all C shell variable independent of environment variables? Use an example to clarify.

® 2

Show the output of the following script: (Try to figure it out first, and then check by typing in and running the script).
#!/bin/sh -e

name="Wile E. Coyote"

printf "S$name\n"

printf "name\n"
printf ’S$name\n’

9. What is the output of the following script? What do you think is the intended output and how can we make it happen?
#!/bin/sh -e
file_size=200

printf "File size is $file_sizeMB.\n"

The Research Computing User’s Guide 156 /574

10. What is the danger in the following script? Alter the script to eliminate the risk.
#!/bin/sh -e

printf "The first 20 lines of file.txt are:\n"
head -n 20 file.txt

printf "The last 20 lines of file.txt are:\n"
tail -n 20 file.txt

11. Write a shell script that prints the following, using a single printf command and using we -1 to find the number of lines in
the file. Exact white space is not important.

inputl.txt contains 3258 lines.

4.9 Hard and Soft Quotes

Double quotes are known as soft quotes, since shell variable references, history events (!), and command output capture ($() or
) are all expanded when used inside double quotes.

shell-prompt: history
1003 18:11 ps
1004 18:11 history

shell-prompt: echo "!'hi"
echo "history"
history

shell-prompt: echo "Today is ‘date"
Today is Tue Jun 12 18:12:33 CDT 2018

shell-prompt: echo "S$TERM"
xterm

Single quotes are known as hard quotes, since every character inside single quotes is taken literally as part of the string, except
for history events. Nothing else inside hard quotes is processed by the shell. If you need a literal ! in a string, it must be escaped.

shell-prompt: history
1003 18:11 ps
1004 18:11 history
shell-prompt: echo ’!'hi’
echo ’"history’
history
shell-prompt: echo ’\'!'hi’
'hi
shell-prompt: echo ’'Today is ‘date‘’
Today is ‘date?
shell-prompt: echo ’$TERM’
STERM

What will each of the following print? (If you’re not sure, try it!)
#!/bin/sh -e

name='Joe Sixpack’
printf "Hi, my name is S$name.\n"

#!/bin/sh -e

name='Joe Sixpack’
printf "Hi, my name is S$name.\n’

The Research Computing User’s Guide 157 /574

#!/bin/sh -e

first_name="Joe"

last_name=’ Sixpack’
name=’'$first_name $last_name’
printf "Hi, my name is S$name.\n"

If you need to include a quote character as part of a string, you have two choices:

1. Escape it (precede it with a backslash character):

printf "Hi, I\'m Joe Sixpack.\n’

2. Use the other kind of quotes to enclose the string. A string terminated by double quotes can contain a single quote and
vice-versa:

printf "Hi, I’'m Joe Sixpack.\n"
printf 'I'm a Unix scripting "newbie".\n’

No operator is needed to concatenate strings in a shell command. We can simply place multiple strings in any form (variable
references, literal text, etc.) next to each other.

var=Joe

printf "Hello, '’ Joe.’

printf "Hello, "’Joe.’

printf ’'Hello ,’$var’.’ # Variable reference between hard-quoted strings
printf "Hello, S$var." # Variable between text in a soft-quoted string

4.9.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What shell constructs are expanded when found inside hard quotes?
2. What shell constructs are expanded when found inside soft quotes?
3. What is the output of the following script if it is run in /home/joe?
#!/bin/sh -e
cwd=$ (pwd)
printf "The CWD is $cwd.\n"
string=’'The CWD is $cwd.\n’
printf "S$string"
4. How do we print a single quote character in a shell command?

5. How do we concatenate two strings in a shell command?

The Research Computing User’s Guide 158 /574

4.10 User Input

Shell scripts are often interactive, requesting input in the form of data or parameters directly from the user via the keyboard. All
shells have the ability to read input and assign it to shell variables.

In Bourne Shell derivatives, data can be input from the standard input using the read command:

#!/bin/sh -e

printf "Please enter the name of an animal: "

read animal

printf "Please enter an adjective: "

read adjectivel

printf "Please enter an adjective: "

read adjective2

printf "The Sadjectivel $adjective2 $animal Jjumped over the lazy dog.\n"

C shell and T shell use the special symbol $< rather than a command to read input:

#!/bin/csh -ef

printf "Please enter the name of an animal: "

set animal = "S$<"

printf "Please enter an adjective: "

set adjectivel = "s<"

printf "Please enter an adjective: "

set adjective2 = "s<"

printf "The S$adjectivel $adjective2 $animal jumped over the lazy dog.\n"

The $< symbol behaves like a variable, which makes it more flexible than the read command used by Bourne family shells. It
can be used anywhere a regular variable can appear.

#!/bin/csh -ef

printf "Enter your name: "
printf "Hi, $<!\n"

@ Caution The $< symbol should usually be enclosed in soft quotes in case the user enters text containing white space.
Otherwise, only the first "word" of input (text before the first white space character) will be captured by a set command
like those above.

Practice Break
Write a shell script that asks the user to enter their first name and last name, stores each in a separate shell variable, and
outputs "Hello, first-name last-name". For example:

Please enter your first name: Barney
Please enter your last name: Miller
Hello, Barney Miller!

4.10.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

The Research Computing User’s Guide 159 /574

1. Write a shell script that lists the files in the CWD, asks the user for the name of a file, a source string, and a replacement
string, and then shows the file content with all occurrences of the source replaced by the replacement.

shell-prompt: cat fox.txt
The quick brown fox jumped over the lazy dog.

shell-prompt: ./replace.sh

Documents R fox.txt stringy
Downloads igv stringy.c

File name? fox.txt

Source string? fox

Replacement string? tortoise

The quick brown tortoise jumped over the lazy dog.

4.11 Conditional Execution

As a Unix scripter, you have been living in a cocoon until now, growing and developing, but confined and unable to do much. In
the next few sections, you will become ready to emerge and spread your wings, so you can see the vast possibilities of automated
research computing for the first time. To use another metaphor, this is where you will reach the critical mass of knowledge
needed to step aside and let Unix do much of the work for you. Give this material the attention it deserves, so that your future as
a computational scientist will be as easy and rewarding as it can be.

Sometimes we need to run a particular command or sequence of commands only if a certain condition is true. For example, if
program B processes the output of program A, we probably won’t want to run B at all unless A finished successfully.

4.11.1 Command Exit Status

Conditional execution in Unix shell scripts often utilizes the exit status of the most recent command. All Unix programs return
an exit status. By convention, programs return an exit status of 0 if they determine that they completed their task successfully
and a variety of non-zero error codes if they failed. There are some standard error codes defined in the C header file sysexits.h.
You can learn about them by running man sysexits. Or, for a quick listing of their names and values, run grep ’#define.*EX_’
/usr/include/sysexits.h.

A shell script can assign an exit status by providing an argument to the exit command:

#!/bin/sh -e
exit 0 # Report success (EX_OK)

exit 65 # Report input error (EX_DATAERR)

We can check the exit status of the most recent command by examining the shell variable $? in Bourne shell family shells or
$status in C shell family shells.

bash> 1s

myprog.c

bash> echo $7?

0

bash> 1s -z

ls: illegal option -- z

usage: ls [-ABCFGHILPRSTUWZabcdfghiklmnopgrstuwxl] [-D format] [file ...]
bash> echo $?

1

bash>
tcsh> 1s
myprog.c

tcsh> echo $status

The Research Computing User’s Guide 160/574

0
tcsh> 1s -z
ls: illegal option -- z

usage: ls [-ABCFGHILPRSTUWZabcdfghiklmnopgrstuwxl] [-D format] [file ...]
tcsh> echo $status

1

tcsh>

Practice Break
Run several commands correctly and incorrectly and check the $? or $status variable after each one.

4.11.2 If-then-else Commands

All Unix shells have an i f-then—else construct implemented as internal commands. The Bourne shell family of shells all
use the same basic syntax. The C shell family of shells also use a common syntax, which is somewhat different from the Bourne
shell family, more closely resembling the C language.

Bourne Shell Family

Unlike general-purpose languages such as C and Java, a Bourne shell conditional command does not take a Boolean (true/false)
expression. Rather, it takes a Unix command, and the decision is based on the exit status of that command. The general syntax
of a Bourne shell family conditional is shown below. Note that there can be an unlimited number of e11 fs, but we will use only
one for this example.

#!/bin/sh -e

if commandl; then # Commandl succeeded (exit status was 0)
command
command

elif command2; then # Command2 succeeded (exit status was 0)
command
command

else # All commands above failed
command

command

fi

Note
The 'if’ and the 'then’ are actually two separate commands, so they must either be on separate lines, or separated by a ’;,
which can be used instead of a newline to separate Unix commands.

Note
Code controlled by an if should be consistently indented as shown above. How much indentation is used is a matter of
personal taste, but four spaces is typical.

In the example above, the if command executes command]1 and checks the exit status when it completes. If the exit status is O
(indicating success), then all the commands before the elif are executed, and everything after the elif is skipped.

The Research Computing User’s Guide 161/574

If the exit status is non-zero, then nothing above the elif is executed. The elif command then executes command2 and checks its
exit status.

If the exit status of command? is 0, then the commands between the elif and the else are executed and everything after the else
is skipped.

If the exit status of command?2 is non-zero, everything above the else is skipped and everything between the else and the fi is
executed.

Note In Bourne shell if commands, an exit status of zero effectively means ’true’ and non-zero means ’false’, which is the
opposite of C and similar languages.

In most programming languages, we use some sort of Boolean expression (usually a comparison, also known as a relation), not a
command, as the condition for an if statement. This is generally true in Bourne shell scripts as well, but the capability is provided
in an interesting way. We’ll illustrate by showing an example and then explaining how it works.

Suppose we have a shell variable and we want to check whether it contains the string "blue". We could use the following if
command to test:

#!/bin/sh -e

printf "Enter the name of a color: "
read color

if ["Scolor" = "blue"]; then
printf "You entered blue.\n"
elif ["Scolor" = "red"]; then
printf "You entered red.\n"
ellse
printf "You did not enter blue or red.\n"
fi

This may look like it violates what we just stated; that Bourne shell conditionals take a command, not a Boolean expression. The
interesting thing about this code is that the square brackets are not Bourne shell syntax.

The ’[’ in the conditional above is actually an external command. In fact, it is simply another name for the test command. The
files /bin/test and /bin/ [are actually links the same executable file:

shell-prompt: 1ls -1 /bin/test /bin/|
-r-xr-xr—-x 2 root wheel 8516 Apr 9 2012 /bin/[=*
-r—-xr—-xr-x 2 root wheel 8516 Apr 9 2012 /bin/testx

We could have also written the following, to make it more obvious that we are actually running another command in the if
command:

if test "Scolor" = "blue"; then

Hence, *$color’, ’=", ’blue’, and ’]” are arguments to the ’[* command, and must be separated by white space. If the command is
invoked as ’[’, it requires the last argument to be ’]’. If invoked as ’test’, the ’]” is not allowed.

The test command can be used to perform comparisons (relational operations) on variables and constants, as well as a wide
variety of tests on files. For comparisons, test takes three arguments: the first and third are string values and the second is a
relational operator.

Compare a variable to a string constant
test "Sname" = ’Bob’
["S$Sname" = ’'Bob’]

The Research Computing User’s Guide 162 /574

Compare the output of a program directly to a string constant
test ‘myprog‘' = 42
[‘myprog' = 42]

For file tests, test takes two arguments: The first is a flag indicating which test to perform and the second is the path name of the
file or directory.

See if output file exists and is readable to the user
running test

test —-r output.txt

[—-r output.txt]

The exit status of test is 0 (success) if the test is deemed to be true and a non-zero value if it is false.

shell-prompt: test 1 =1

shell-prompt: echo $? # Or $status for C shell
0

shell-prompt: test 1 = 2

shell-prompt: echo $? # Or $status for C shell
1

The relational operators supported by test are shown in Table 4.5.

Operator Relation

= Lexical equality (string comparison)
-eq Integer equality

I= Lexical inequality (string comparison)
-ne Integer inequality

< Lexical less-than (10 < 9)

-1t Integer less-than (9 -1t 10)

-le Integer less-than or equal

> Lexical greater-than

-gt Integer greater-than

-ge Integer greater-than or equal

Table 4.5: Test Command Relational Operators

Caution
Note that some operators, such as < and >, have special meaning to the shell, so they must be escaped or quoted.

[10 > 9]
test 10 > 9 Redirects output to a file called ’"9'.
The only argument sent to the test command is "10’.

The test command issues an error message since it

H oW e

did not receive enough arguments.

[10 \> 9 1
test 10 \> 9 # Compares 10 to 9

[10 "> 9]
test 10 ">’ 9 # Compares 10 to 9

@ Caution It is a common error to use '==" with the test command, but the correct equality operator is '=’, unlike C and
similar languages.

The Research Computing User’s Guide 163 /574

Common file tests are shown in Table 4.6. To learn about additional file tests, run man test.

Flag Test

-e Exists

-T Is readable

-W Is writable

-X Is executable

-d Is a directory

-f Is a regular file

-L Is a symbolic link

- Exists and is not empty
-Z Exists and is empty

Table 4.6: Test command file operations

O

Caution

Variable references in a [or test command should usually be enclosed in soft quotes. If the value of the variable
contains white space, such as "navy blue", and the variable is not enclosed in quotes, then "navy" and "blue" will be
considered two separate arguments to the [command, and it will fail.

Furthermore, if there is a chance that a variable used in a comparison is empty, then we must attach a common string
to the arguments on both sides of the operator. It can be almost any character, but '0’ is popular and easy to read.

name=""
if ["Sname" = "Bob"]; then # Error, expands to: if [= Bob; then
if [0"$name" = 0"Bob"]; then # OK, expands to: if [0 = 0Bob]; then

Relational operators are provided by the test command, not by the shell. Hence, to find out the details, we would run "man test"
or "man [", not "man sh" or "man bash".

Practice Break
Run the following commands in sequence and run echo $? after every test under Bourne shell or echo $status after every
test under C shell.

which [test

test 1 =1

test 1=2

test 1 = 2

[1 =1

[1=1]

[2 < 10]

[2 \< 10]

[2 -1t 10]

name="" # Bourne shell only
set name='"' # C shell only

[Sname = Bill]

[OSname = 0Bill]

name=Bob # Bourne shell only
set name=Bob # C shell only

[$Sname = Bill]

[$Sname = Bob]

The Research Computing User’s Guide 164 /574

C shell Family

Unlike the Bourne shell family of shells, the C shell family implements its own conditional expressions and operators, so there
is generally no need for the test or [command, though you can use it in C shell scripts if you really want to.

The C shell if command requires () around the condition, and the condition is a Boolean expression, just like in C and similar
languages. As in C, and unlike Bourne shell, a value of zero is considered false and non-zero is true.

#!/bin/csh -—ef

printf "Enter the name of a color: "
set color = "S$<"

if ({ test "Scolor"™ \< blue }) then
printf "Yup.\n"
endif

if ("Scolor" == "blue") then
printf "You entered blue.\n"
else if ("S$Scolor" == "red") then
printf "You entered red.\n"
else
printf "You did not enter blue or red.\n"
endif

The C shell relational operators are shown in Table 4.7.

Operator Relation

< Integer less-than

> Integer greater-than

<= Integer less-then or equal
>= Integer greater-than or equal

== String equality

= String inequality

=~ String matches glob pattern

I~ String does not match glob pattern

Table 4.7: C Shell Relational Operators

C shell if commands also need soft quotes around strings that contain white space. However, unlike the test command, it can
handle empty strings, so we don’t need to add an arbitrary prefix like 0’ if the string may be empty.

if [0"Sname" = 0"Bob"]; then
if ("Sname" == "Bob") then

The most readable way to check the status of a command in C shell is using the status variable. Note that we need to avoid
invoking csh with —e so that the shell process will not terminate when a command fails.

#!/bin/csh -f

commandl
if ($status ==) then

Stuff to do only if commandl succeeded
else

exit 1 # Exit on error since we did not use #!/bin/csh -e
endif

The Research Computing User’s Guide 165/574

4.11.3 Shell Conditional Operators

Unix shells provide conditional operators that allow us to invert the exit status of a command or combine exit status from multiple
commands. They use the same Boolean operators as C for AND (&&), OR (ll), and NOT (!).

Operator Meaning Exit status

test ! command NOT 0 if command failed, 1 if it succeeded
commandl && command? AND 0 if both commands succeeded
command] || command?2 OR 0 if either command succeeded

Table 4.8: Shell Conditional Operators

Invert exit status (0 to non-zero, non-zero to 0)
shell-prompt: ! command

See if both commandl and command2 succeeded
shell-prompt: commandl && command?2

See if either commandl or command2 succeeded
shell-prompt: commandl || command2

These operators can be used in Bourne shell conditionals much the same way as in C:

if [O"S$first_name" = 0"Bob"] && [O"S$last_name" = 0"Newhart"]; then

We can also the test command’s own operators:

if [O"S$first_name" = 0"Bob" —-a 0"S$last_name" = 0"Newhart"]; then

Note that in the case of the && operator, command2 will not be executed if command 1 fails (exits with non-zero status). There is
no point running the second command, since both commands must succeed to produce an overall status of 0. Once any command
in an && sequence fails, the exit status of the whole sequence will be 1 no matter what happens after that.

Likewise in the case of a Il operator, once any command succeeds (exits with zero status), the remaining commands will not be
executed.

This fact is often used as a clever trick to conditionally execute a command only if another command succeeds or fails.

Execute main-processing only if pre-processing succeeds and
post-processing only if main-processing succeeds
pre-processing && main-processing && post-processing

Equivalent using an if-then-fi
if pre-processing; then
if main-processing; then
post-processing
fi
fi

Conditional operators can also be used in a C shell if command. Parenthesis are recommended around each relation for readabil-
ity.

if (("Sfirst_name" == "Bob") && ("Slast_name" == "Newhart")) then

The Research Computing User’s Guide 166 /574

Practice Break
Run the following commands in sequence and run echo $? after every command under Bourne shell or echo $status after
every command under C shell.

ls -z

ls -z && echo Done
ls —a && echo Done
ls -z || echo Done
ls —-a || echo Done

Practice Break
Instructor: Lead the class through development of a script that does the following. The solution is at the end of the chapter. No
peeking...

1. Lists the CWD

2. Prompts the user for a filename and reads it

3. Prints an error message and exits with status 65 if the file does not exist or is not a regular file
4. Displays the first 5 lines of the file

5. Prompts the user for a simple search string and reads it

6. Displays lines in the file that contain the search string

shell-prompt: ./search.sh

CNC-EMDiff Reference search-me.txt
Computer SVN search.sh
Enter the name of the file to search: searchme.txt
searchme.txt is not a regular file.

shell-prompt: ./search.sh

CNC-EMDiff Reference search-me.txt
Computer SVN search.sh
Enter the name of the file to search: GFF

GFF is not a regular file.

shell-prompt: ./search.sh

CNC-EMDiff Reference search-me.txt
Computer SVN search.sh
Enter the name of the file to search: search-me.txt

This

is

a

test

file

Enter a string to search for in search-me.txt: test

test

4.11.4 Case and Switch Commands
If you need to compare a single variable to many different values, you could use a long string of elifs or else ifs:
#!/bin/sh -e

printf "Enter a color name: "

The Research Computing User’s Guide 167 /574

read color

if ["S$Scolor" = "red" 1 || \

["Scolor" = "orange"]; then
printf "Long wavelength\n"
elif ["Scolor" = "yellow"] || \

["Scolor" = "green"] || \
["Scolor" = "blue"]; then
printf "Medium wavelength\n"
elif ["S$Scolor" = "indigo"] || \
["Scolor" = "violet"]; then
printf "Short wavelength\n"
else

printf "Invalid color name: S$color\n"
fi

Like most languages, however, Unix shells offer a cleaner solution.
Bourne shell has the case command:

#!/bin/sh -e

printf "Enter a color name: "
read color

case $color in
red|orange)
printf "Long wavelength\n"
2
yellow|green|blue)
printf "Medium wavelength\n"
2
indigo|violet)
printf "Short wavelength\n"
I
*)
printf "Invalid color name: $color\n"
2
esac

C shell has a switch command that looks almost exactly like the switch statement in C, C++, and Java:
#!/bin/csh —-ef

printf "Enter a color name: "
set color = "s<"

switch ($color)

case red:

case orange:
printf "Long wavelength\n"
breaksw

case yellow:

case green:

case blue:
printf "Medium wavelength\n"
breaksw

case indigo:

case violet:

printf "Short wavelength\n"
breaksw

The Research Computing User’s Guide 168 /574

default:

printf "Invalid color name: S$color\n"

endsw

Note The ;; and breaksw commands cause a jump to the first command after the entire case or switch. The ;; is required
after every value in the Bourne shell case command. The breaksw is optional in the switch command. If omitted, the script
will simply "fall through" to the next case (continue on and execute the commands for the next case value).

Note
Code controlled by a case or switch should be consistently indented as shown above. How much indentation is used is a
matter of personal taste, but four spaces is typical.

4.11.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

Eal A

What is the exit status of a command that succeeds? One that fails?
What variables contain the exit status of the most recent command in Bourne shell and C shell?
What is the meaning of [in a shell script and how is it used?

Write a shell script that lists the files in the CWD, asks the user for the name of a file, tests for the existence of the file, and
issues an error message if it does not exist. If the file does exist, the script then asks for a source string and a replacement
string, verifying that the source string is not empty, and then shows the file content with all occurrences of the source
replaced by the replacement. The script should exit with status 65 (EX_DATAERR) if any bad input is received.

shell-prompt: cat fox.txt
The quick brown fox jumped over the lazy dog.

shell-prompt: ./replace.sh

Documents R fox.txt stringy
Downloads igv stringy.c

File name? fxo.txt

File fxo.txt does not exist.

shell-prompt: echo $?

65

shell-prompt: ./replace.sh

Documents R fox.txt stringy
Downloads igv stringy.c

File name? fox.txt

Source string?

Source string cannot be empty.

shell-prompt: echo $?

65

shell-prompt: ./replace.sh

Documents R fox.txt stringy
Downloads igv stringy.c

File name? fox.txt

Source string? fox

Replacement string? tortoise

The quick brown tortoise jumped over the lazy dog.

shell-prompt: echo $?

0

The Research Computing User’s Guide

169 /574

5. Modify the previous script so that it reports an error if the replacement string is empty or the same as the source. Use a
conditional operator to check both conditions in one if-then-else command.

shell-prompt: ./replace.

Documents R
Downloads igv
File name? fox.txt
Source string? fox
Replacement string?
Replacement must not be
shell-prompt: echo $?
65

shell-prompt: ./replace.

Documents R
Downloads igv
File name? fox.txt
Source string? fox
Replacement string? fox
Replacement must not be
shell-prompt: echo $?
65

sh
fox.txt stringy
stringy.c

empty or the same as source.

sh
fox.txt stringy
stringy.c

empty or the same as source.

6. Write a shell script that asks the user for a directory name and the name of an archive to create from it, checks the file
name extension on the archive name using a switch/case, and creates a tarball with the appropriate compression. The
script should report an error and exit with status 65 if an invalid file name extension is used for the archive name, or if the

directory name entered does not exist or is not a directory.

shell-prompt: ./case.sh

Coral Qemu case.sh scripts
Directory to archive? Qem

Qem is not an existing directory.

shell-prompt: ./case.sh

Coral Qemu case.sh scripts
Directory to archive? case.sh

case.sh is not an existing directory.

shell-prompt: ./case.sh

Coral Qemu case.sh scripts
Directory to archive? Qemu

Archive name? gemu.ta

Invalid archive name: gemu.ta

shell-prompt: ./case.sh

Coral Qemu case.sh scripts
Directory to archive? Qemu

Archive name? gemu.txz

a Qemu

a Qemu/FreeBSD-13.0-RELEASE-riscv-riscvé64.raw

Extension Tool

tar No compression
tar.gz or tgz gzip

tar.bz2 or tbz bzip2

tar.xz or txz XZ

Table 4.9: Compression tool for each filename extension

In Bourne shell, the file name extension can be extracted from a shell variable as follows:

The Research Computing User’s Guide 170/574

extension=${filename##x*.} # Strip off everything to the last .’

In C shell:

set extension=${archive:e} # Extract filename extension

7. Write a shell script that does the following in sequence:

(a) Check for the existence of Homo_sapiens.GRCh38.107.chromosome.1.gff3 in the CWD. If it is not present, down-
load the gzipped file using curl from http://ftp.ensembl.org/pub/release-107/gft3/homo_sapiens/ and decompress it.

(b) Display the first 5 lines of the file that do not begin with °#’, so the user can see the format of an entry. Hint: See the
grep man page for an option to select lines that do not match the given pattern.

(c) Ask the user which column to search, and then display all unique values in that column. Hint: Use grep again to
filter out lines beginning with ’#’, run them through cut or awk to select just the desired column, and run the output
through sort and uniq or just sort with the appropriate flags.

(d) Ask the user for a search key, and display all the lines in the file not beginning with *#’ that contain the given key in
the given column. Hint: The awk ’~’ operator means "contains", e.g. *$1 ~ "text"” means the first field contains the
string "text". You can use the —v to set column and key variables to use in the awk pattern.

awk -v column=$column -v key=$key ’your awk script’

shell-prompt: ./gff.sh

% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed

100 4111k 100 4111k 0 0 550k 0 0:00:07 0:00:07 —-—:——:—— 589k

1 GRCh38 chromosome 1 248956422 5 5 3 ID= <>
chromosome:1;Alias=CM000663.2,chrl,NC_000001.11

1 . biological_region 10469 11240 1.3e+03 . . =
external_name=oe %3D 0.79;logic_name=cpg

1 . biological_region 10650 10657 0.999 + . ~
logic_name=eponine

1 . biological_region 10655 10657 0.999 = . &~
logic_name=eponine

1 . biological_region 10678 10687 0.999 + . <~

logic_name=eponine

Column to search? 3
CDS

biological_region
chromosome

exon

five_prime_UTR

gene

1nc_RNA

mRNA

miRNA

ncRNA

ncRNA_gene

pseudogene
pseudogenic_transcript
rRNA

scRNA

snRNA

sSnoRNA
three_prime_UTR
unconfirmed_transcript

The Research Computing User’s Guide 171/574

Search key? UTR

1 havana five_prime_UTR 65419 65433 . + . Parent= <>
transcript :ENST00000641515

1 havana five_prime_UTR 65520 65564 . + . Parent= <
transcript :ENST00000641515

1 havana three_prime_UTR 70009 71585 . + . Parent=
transcript :ENST00000641515

1 havana five_prime_UTR 923923 924431 . + . Parent= <
transcript :ENST00000616016

1 havana three_prime_UTR 944154 944574 . + . Parent= <

transcript :ENST00000616016

4.12 Loops

As in other programming languages, our scripts often need to run the same command or commands repeatedly. Very often,
we need to run the same sequence of commands on a group of files. In simple cases, we can simply provide all of the files as
arguments to a single invocation of a command, or use xargs to provide them:

shell-prompt: analyze inputx*.txt
find . —-name ’inputx.txt’ | xargs analyze

We can achieve the same effect, as well as handle more complex situations involving multiple commands, using a loop in a shell
script.

4.12.1 For and Foreach

Unix shells offer a type of loop that takes an enumerated list of string values, rather than counting through a sequence of numbers
or looping while some input condition is true. This makes shell scripts very convenient for working with sets of files or arbitrary
sets of values. This type of loop is well suited for use with globbing (file name patterns using wild cards, as discussed in
Section 3.7.5):

#!/bin/sh -e

Process input-1.txt, input-2.txt, etc.
for file in input-=*.txt
do
./myprog $file
done

#!/bin/csh -ef

Process input-1l.txt, input-2.txt, etc.
foreach file (input-=*.txt)

./myprog $file
end

Note
Code controlled by a loop should be consistently indented as shown above. How much indentation is used is a matter of
personal taste, but four spaces is typical.

These loops are not limited to using file names, however. We can use them to iterate through any list of string values:

The Research Computing User’s Guide 172 /574

#!/bin/sh -e

for fish in flounder gobie hammerhead manta moray sculpin
do

printf "$s\n" $fish
done

#!/bin/sh -e

for cin 1 2 3 45 6 7 8 9 10
do

printf "&d\n" S$c
done

To iterate through a list of integers too long to type out, we can utilize the seq command, which takes a starting value, optionally
an increment value, and an ending value, and prints the sequence to the standard output. We can use shell output capture
(Section 4.8.4) to represent the output of the seq command as a string in the script:

#!/bin/sh -e

Count from 0O to 1000 in increments of 5
for ¢ in $(seq 0 5 1000); do

printf "%d\n" S$c
done

#!/bin/csh -ef

foreach ¢ (‘'seg 0 5 1000%')
printf "%s\n" S$c
end

The seq can even be used to embed integer values in a non-integer list:

#!/bin/sh -e

Process all human chromosomes

for chromosome in $(seq 1 22) X Y; do
printf "chr%s\n" $chromosome

done

Practice Break
Type in and run the fish example above.

Example 4.3 Multiple File Downloads

Often we need to download many large files from another site. This process would be tedious to do manually: Start a download,
wait for it to finish, start another... There may be special tools provided by the website, but often they are poorly maintained or
difficult to use. In many cases, we may be able to automate the download using a simple script and a mainstream transfer tool
such as curl, rsync, or wget.

The model scripts below demonstrate how to download a set of files using curl. The local file names will be the same as those
on the remote site, and if the transfer is interrupted for any reason, we can simply run the script again to resume the download
where it left off.

Depending on the tools available on your local machine and the remote server, you may need to substitute another file transfer
program for curl.

#!/bin/sh -e

The Research Computing User’s Guide 173 /574

Download genome data from the ACME genome project

site=http://server.with.my.files/directory/with/my/files

for file in frogl frog2 frog3 toadl toad2 toad3; do
printf "Fetching $site/$file.fasta.gz...\n"

Use filename from remote site and try to resume interrupted
transfers if a partial download already exists
curl --continue-at - —--remote-name $site/$file.fasta.gz

fi

#!/bin/csh -ef

Download genome data from the ACME genome project
set site=http://server.with.my.files/directory/with/my/files
foreach file (frogl frog2 frog3 toadl toad2 toad3)

printf "Fetching $site/$file.fasta.gz...\n"

Use filename from remote site and try to resume interrupted
transfers if a partial download already exists
curl --continue-at - —--remote-name $site/$file.fasta.gz

end

4.12.2 While Loops

A for or foreach loop is only convenient for iterating through a fixed set of values or a sequence generated by a program such as
seq. Sometimes we may need to terminate a loop based on inputs that are unknown when the loop begins, or values computed
over the course of the loop.

The while loop is a more general loop that iterates as long as some condition is true. It uses the same types of expressions as an
if command. The while loop can be used to iterate through long integer sequences, as we might do with seq and a for/foreach
loop:

#!/bin/sh -e

c=1
while [$c -le 100]
do
printf "%d\n" $c
c=5((Sc + 1)) # (()) encloses an integer expression
done

Note again that the [above is an external command, as discussed in Section 4.11.1, so we must use white space to separate the
arguments.

#!/bin/csh -ef

set ¢ =1
while ($c <= 100)

printf "%d\n" S$c

@ c=5%c+1 # @ is like set, but indicates an integer expression
end

Note
Code controlled by a loop should be consistently indented as shown above. How much indentation is used is a matter of
personal taste, but four spaces is typical.

The Research Computing User’s Guide

174 /574

Practice Break
Type in and run the script above.

While loops can also be used to iterate until an input condition is met:

#!/bin/sh -e

continue="'"

while [0"S$Scontinue" != 0'y’] && [0"Scontinue"

printf "Would you like to continue? (y/n)
read continue
done

#!/bin/csh -—ef

set continue='"'

while (("Scontinue" != 'y’) && ("Scontinue"
printf "Continue? (y/n) "
set continue="S$<"

end

I = lnl)

= 0'n’

Practice Break
Type in and run the script above.

We may even want a loop to iterate forever. This is often useful when using a computer to collect data at regular intervals. It is

up to the user to terminate the process using Ctrl+c or Kill.

#!/bin/sh -e

'true’ is an external command that always returns an exit status of 0

while true; do
sample-data # Read instrument

sleep 10 # Pause for 10 seconds without using any CPU time

done

#!/bin/csh -ef

while (1)

sample-data # Read instrument

sleep 10 # Pause for 10 seconds without using any CPU time
end

4.12.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Describe three ways to run the same program using multiple input files.

2. Write a shell script that prints the square of every number from 1 to 10 using for/foreach and seq.

The Research Computing User’s Guide 175/574

3. Write a shell script that prints the square of every number from 1 to 100 using while.

4. Write a shell script that sorts each file in the CWD whose name begins with "input" and ending in ".txt", and saves the
outputtooriginal-filename. sorted. You may assume that there are not too many input files for a simple globbing
pattern. The script then merges all the sorted text into a single file called combined. txt . sorted, with duplicate lines
removed. Hint: The sort can also merge presorted files. Check the man page for the necessary flag.

shell-prompt: ./sort.sh

inputl.txt:
Starbuck
Adama

inputl.txt.sorted:
Adama
Starbuck

input2.txt:
Tigh
Apollo

input2.txt.sorted:
Apollo
Tigh

Combined:
Adama
Apollo
Starbuck
Tigh

4.13 Generalizing Your Code

All programs and scripts require input in order to be useful. Inputs commonly include things like scalar parameters to use in
equations and the names of files containing more extensive data such as a matrix or a database.

4.13.1 Hard-coding: Failure to Generalize

All too often, inexperienced programmers provide what should be input to a program by hard-coding values and file names into
their programs and scripts:
#!/bin/sh -e

Hard-coded values 1000 and output.txt
calcpi 1000 > output.txt

Some programmers will even make another copy of the program or script with different constants or file names in order to do a
different run. The problem with this approach should be obvious. It creates a mess of many nearly identical programs or scripts,
all of which have to be maintained together. If a bug is found in one of them, then all of them have to be checked and corrected
for the same error.

4.13.2 Generalizing with User Input

A more rational approach is to take these values as input:

The Research Computing User’s Guide 176 /574

#!/bin/sh -e

printf "How many iterations? "
read iterations

printf "Output file? "

read output_file

calcpi $iterations > S$Soutput_file

If you don’t want to type in the values every time you run the script, you can put them in a separate input file, such as "input-
1000.txt" and use redirection:

shell-prompt: cat input-1000.txt

1000

output-1000.txt

shell-prompt: calcpi-script < input-1000.txt

This way, if you have 10 different inputs to try, you have 10 input files and only one script to maintain instead of 10 scripts.

4.13.3 Generalizing with Command-line Arguments

Another approach is to design the script so that it can take command-line arguments, like most Unix commands. Using command-
line arguments is quite simple in most scripting and programming languages. In all Unix shells, the first argument is denoted by
the special variable $1, the second by $2, and so on.

$0 refers to the name of the command as it was invoked. A script file can be renamed, so hard-coding the current name in error
messages is a bad idea. Using $0 eliminates future maintenance.

Bourne Shell Family

In Bourne Shell family shells, we can find out how many command-line arguments were given by examining the special shell
variable $#. This is most often used to verify that the script was invoked with the correct number of arguments.

#!/bin/sh -e

If invoked incorrectly, tell the user the correct way

if [$# != 2 1; then
printf "Usage: $0 iterations output-file\n" >> /dev/stderr
exit 1

fi

Assign to named variables for readability
iterations=51
output_file="S52" # File name may contain white space!

calcpi $iterations > "Soutput_file"

shell-prompt: ./calcpi-script

Usage: calcpi-script iterations output-file
shell-prompt: ./calcpi-script 1000 output-1000.txt
shell-prompt: cat output-1000.txt

3.141723494

C shell Family

In C shell family shells, we can find out how many command-line arguments were given by examining the special shell variable
S#argv.

The Research Computing User’s Guide

177 /574

#!/bin/csh -ef

If invoked incorrectly, tell the user the correct way

if (S#argv != 2) then
printf "Usage: $0 iterations output-file\n" >> /dev/stderr
exit 1

endif

Assign to named variables for readability
set iterations=$1

set output_file="s2" # File name may contain white space!

calcpi $iterations > "Soutput_file"

4.13.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. Modify the following shell script so that it takes the starting and ending values of the loop as user input rather than hard-

coding them.

#!/bin/sh —-e

for ¢ in $(seq 1 10); do
c_squared=5((Sc * $c))
printf "$s”2 = %s\n" $c $c_squared
done

shell-prompt: ./squares.sh
First value to square? 3
Last value to square? 9
372 = 9

~"2 =16
= 25
= 36
= 49
= 64
= 81

A

O 00 J o U1 >
> >
NDNDDNDDNDDNDDN

2. Repeat the above exercise, but use command-line arguments instead of user input.

shell-prompt: ./squares.sh
Usage: ./squares.sh first-value last-value

shell-prompt: ./squares.sh 4 10
472 = 16

= 25

= 36

49

= 64

= 81

2 = 100

A

A

N

A

SN NN NN
Il

5
6
7
8/\
9
1

0

The Research Computing User’s Guide 178 /574

4.14 Pitfalls and Best Practices

A very common and very bad practice in shell scripting is inferring things from the wrong information in order to make decisions.
One of the most common ways this bad approach is used involves making assumptions based on the operating system in use.
Take the following code segment, for example:

if [‘uname' == 'Linux’]; then
compiler='gcc’ # Compiler to use
endian=’1little’ # Byte order for this CPU
fi

Both of the assumptions made about Linux in the code above were taken from real examples!

Setting the compiler to gee because we’re running on Linux is simply wrong, because Linux can run other compilers such as
clang or icc. Compiler selection should be based on the user’s wishes or the needs of the program being compiled, not the
operating system. Also, gec is the same as cc on most Linux systems (they are generally hard links to the same executable file).
Hence, there is no reason to explicitly use gee on Linux. The ¢c command is available on all Unix systems, being gee on Linux
and clang on FreeBSD, for example. So just using cc to compile programs is the safest default.

Assuming the machine is little-endian is wrong because Linux runs on a variety of CPU types, some of which are big-endian.
The user who wrote this code assumed that if the computer is running Linux, it must be a PC with an x86 processor, which is not
a valid assumption. The alternative for that user was an SGI IRIX workstation using a big-endian MIPS processor. Even if an
operating system only runs on little-endian processors today does not mean the same will be true tomorrow. Hence, a check like
this is a time-bomb, even if it’s valid at the moment you write it.

There are simple ways to find out the actual endianness of a system, so why would we instead try to infer it from an unrelated
fact? We should instead use something like the open source endian program, which runs on any Unix compatible system.

if [‘endian' == ’little’]; then

fi

Moreover, users at this level should never have to worry about the endianness of a system. The fact that the user needed to check
for this at the shell level indicates a serious design flaw in one of the programs he was using.

We can find out the exact CPU type using uname -m or uname -p. They usually report the same string, but on some platforms
may produce different but equivalent strings such as "amd64" and "x86_64" or "arm64" and "aarch64".

4.14.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What can we infer about the hardware on which our script is running based on the name of the operating system?
2. How should a script decide what compiler to use to build programs?

3. How should a script go about determining what type of CPU your system uses?

4.15 Script Debugging

Sometimes a command in a script will fail for reasons that are not obvious. The -x flag is another flag common to both Bourne
Shell and C shell that enables execute tracing, causing the shell to echo commands to the standard error before executing them.
Using this, we can see the exact commands that are being executed after variable and globbing expansions. This might reveal a
misconception we had about how to specify something.

We can tell a script to echo every command by adding a —x flag to the shell command:

The Research Computing User’s Guide 179/574

#!/bin/sh —-ex

#!/bin/csh -efx

Echoing every command is often overkill, however. In both Bourne shell and C shell, we can turn execute tracing on and off
within the script:

#!/bin/sh -e

set -x # Enable command echo
command

command

set +x # Disable command echo

#!/bin/csh -ef

set echo # Enable command echo
command
command
unset echo # Disable command echo

4.15.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is execute tracing?
2. How do we enable execute tracing for an entire script?

3. How do we enable execute tracing for just a few commands in a script?

4.16 Functions, Child Scripts, and Aliases

Most shell scripts tend to be short, but even a program of 100 lines long can benefit from being broken down and organized into
modules.

The Bourne family shells support simple functions for this purpose. C shell family shells do not support separate functions
within a script, but this does not mean that they cannot be modularized. A C shell script can, of course, run other scripts and
these separate scripts can serve the purpose of subprograms.

Some would argue that separate scripts are more modular than functions, since a separate script is inherently available to any
script that could use it, whereas a function is confined to the script that contains it and is prone to get reinvented.

Another advantage of using separate scripts is that they run as a separate process, so they have their own set of shell and
environment variables. Hence, they do not have side-effects on the calling script. Bourne shell functions, on the other hand, can
modify variables in the main script and other functions, impacting the subsequent behavior in ways that will be difficult to debug.

4.16.1 Bourne Shell Functions

A Bourne shell function is defined by simply writing a name followed by parenthesis, and a body between curly braces on the
lines below:

The Research Computing User’s Guide 180/574

name ()

commands

We call a function the same way we run any other command.

#!/bin/sh —-e

line ()

line

If we pass arguments to a function, then the variables $1, $2, etc. in the function will be set to the arguments passed to the
function. Otherwise, $1, $2, etc. will be the command-line arguments passed to the script.

#!/bin/sh -e
print_square ()

{
printf $(($1 * $1))

c=1

while [$c -le 10]; do
printf "%d squared = %d\n" $c ‘print_square c‘
c=$((c + 1))

done

The return command can be used to return a value to the caller, much like exit returns a value from the main script. The return
value is received by the caller in $?, just like the exit status of any other command.

#!/bin/sh -e

myfunc ()
{
if ! commandl; then
return 1
if ! command2; then

return 1

return O

if ! myfunc; then
exit 1
fi

4.16.2 C Shell Separate Scripts

Since C shell does not support internal functions, we implement subprograms as separate scripts. Each script is executed by a
separate child process, so all variables are local to that process.

The Research Computing User’s Guide 181/574

We can, of course, use the source to run another script using the parent shell process as described in Section 4.5. In this case, it
will affect the shell and environment variables of the calling script. This is usually what we intend and the very reason for using
the source command.

When using separate scripts as subprograms, it is especially helpful to place the scripts in a directory that is in your PATH. Most
users use a directory such as ~/bin or ~/scripts for this purpose.

4.16.3 Aliases

An alternative to functions and separate scripts for very simple things is the alias command. This command creates an alias, or
alternate name for another command. Aliases are supported by both Bourne and C shell families, albeit with a slightly different
syntax. Aliases are most often used to create simple shortcuts for common commands.

In Bourne shell and derivatives, the new alias is followed by an ’=". Any command containing white space must be enclosed in
quotes, or the white space must be escaped with a ’\’.

#!/bin/sh -e

alias dir='1s -als’

dir

C shell family shells use white space instead of an ’=" and do not require quotes around commands containing white space.
#!/bin/csh -ef

alias dir 1s -als

dir

An alias can contain multiple commands separated by semicolons, but in this case it must be enclosed in quotes, even in C shell,
since the semicolon would otherwise indicate the end of the alias command.

#!/bin/csh -ef

This will not work:

alias pause printf "Press return to continue..."; $<
#

It is the same as:

#

alias pause printf "Press return to continue..."

$<

This works
alias pause ’'printf "Press return to continue..."; S$<’

pause

4.16.4 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is the advantage of using a Bourne shell function as opposed to running a separate script?
2. What are the advantages of using a separate script, as opposed to a Bourne shell function?

3. Show how to create an alias called rls which runs find . -type f in Bourne shell and C shell.

The Research Computing User’s Guide 182 /574

4.17 Here Documents

We often want to output multiple lines of text from a script, for instance to provide detailed instructions to the user. The output
below is a real example from a script that generates random passphrases.

If no one can see your computer screen right now, you may use one of the
suggested passphrases about to be displayed. Otherwise, make up one of
your own consisting of three words separated by random characters and
modified with a random capital letters or other characters inserted.

We could output this text using six printf commands or one printf and six string constants. This would be messy, though, and
would require quotes around each line of text. We could also store it in a separate file and display it with the cat command, but
this would mean more files to maintain.

A here document, or heredoc for short, is another form of redirection that is typically only used in scripts. It essentially redirects
the standard input from a portion of the script itself. The general form is as follows:

command << end-of-document-marker
Content of the heredoc

end-of-document-marker

The content can contain anything except the marker. End-of-document-marker can be any arbitrary text of your choosing.
You simply must choose a marker that is not in the text you want to display. Common markers are EOM (end of message) or
EOF (end of file).

Heredocs can be used with any Unix command that reads from standard input, but are most often used with the cat or more
command:

#!/bin/sh -e

cat << EOM

If no one can see your computer screen right now, you may use one of the
suggested passphrases about to be displayed. Otherwise, make up one of
your own consisting of three words separated by random characters and
modified with a random capital letters or other characters inserted.

EOM

If the heredoc text may be more than one screen long, then use more instead of cat.

Heredocs can also be used to create files from a template that uses shell or environment variables. Any variable references and
command output capture that appear within the text of a heredoc will be expanded. The output of any command reading from a
heredoc can, of course, be redirected to a file or other device.

#!/bin/csh —-ef

Generate a series of test input files with different ending values
and tolerances
foreach end_value (10 100 1000 10000)

foreach tolerance (0.0001 0.0005 0.001)

cat << EOM > test-input-end_value-tolerance.txt

start_value=1
end_value=$end_value
tolerance=$tolerance
EOM

end
end

The Research Computing User’s Guide 183 /574

4.17.1 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is a heredoc?

2. Can a heredoc contain anything besides literal text?

4.18 Scripting an Analysis Pipeline

4.18.1 What’s an Analysis Pipeline?

An analysis pipeline is simply a sequence of processing steps. Since the steps are basically the same for a given type of analysis,
we can automate the pipeline using a scripting language for the reasons we discussed at the beginning of this chapter: To save
time and avoid mistakes.

A large percentage of scientific research analyses require multiple steps, so analysis pipelines are very common in practice.

4.18.2 Where do Pipelines Come From?

It has been said that for every PhD thesis, there is a pipeline. There are many preexisting pipelines available for a wide variety
of tasks. Many such pipelines were developed by researchers for a specific project, and then generalized in order to be useful for
other projects or other researchers.

Unfortunately, most such pipelines are not well designed or rigorously tested, so they don’t work well for analyses that differ
significantly from the one for which they were originally designed.

Another problem is that most of them are not maintained over the long term. Developers set out with good intentions to help
other researchers, but once their project is done and they move onto new things, they find that they don’t have time to maintain
old pipelines anymore. Also, new tools are constantly evolving and old pipelines therefore quickly become obsolete unless they
are aggressively updated.

Note The best use of most existing pipelines is as an example to following in developing a similar one.

Finally, many pipelines are integrated into a specific system with a graphical user interface (GUI) or web interface, and therefore
cannot be used on a generic computer or HPC cluster (unless the entire system is installed and configured, which is often difficult
or impossible).

For these reasons, every researcher should know how to develop their own pipelines. Relying on the charity of your competitors
for publishing space and grant money will not lead to long-term success in research.

This is especially true for long-term studies. If you become dependent on a preexisting pipeline early on, and it is not maintained
by its developers for the duration of your study, then the completion of your study will prove very difficult.

4.18.3 Implementing Your Own Pipeline

A pipeline can be implemented in any programming language. Since most pipelines involve simply running a series of programs
with the appropriate command-line arguments, a Unix shell script is a very suitable choice in most cases. In some cases, it may
be possible to use Unix shell pipes to perform multiple steps at the same time. This will depend on a number of things:

* Do the processing programs use standard input and standard output? If not, then redirecting to and from them with pipes will
not be possible.

The Research Computing User’s Guide 184 /574

* What are the resource requirements of each step? Do you have enough memory to run multiple steps at the same time?

* Do you need to save the intermediate files generated by some of the steps? If so, then either don’t use a Unix shell pipe, or use
the tee command to dump output to a file and pipe it to the next command at the same time.

shell-prompt: stepl < inputl | tee outputl | step2 > output2

4.18.4 Example Genomics Pipelines
Genomic Differential Analysis

One of the most common types of bioinformatics analysis if differential gene expression using RNA-Seq (ribonucleic acid se-
quence) data. In this type of analysis, RNA molecules are extracted from tissue samples under two different conditions, such
as two time points during development, or wild-type (normal) and mutant individuals. The amount of RNA transcribed from
some genes will differ across the two conditions. From this we can infer that expression of those genes is somehow related to the
conditions being compared.

The extracted RNA is sequenced, producing files containing one sequence for each RNA molecule (in theory), such as "ACUG-
GCAAUCGGAAAUA...". The differential analysis pipeline has the following high-level stages:

—_—

. Clean up the sequences (remove artificial sequences added by the sequencing process)

[\

. Check the quality of the sequence data

3. Map the RNA sequences to a genome, so we know which gene produced each fragment

~

. Count the fragments produced by each gene (not as simple as it sounds)

W

. Compare the counts for each gene across the two conditions

If the counts for a given gene differ significantly between one condition and another, then we conclude that this gene is regulated
(turned on or off) in response to the condition. A complete pipeline to perform this analysis on an HPC cluster is available
at https://github.com/auerlab/cnc-emdiff. A similar pipeline that will run fairly quickly on a single computer is available at
https://github.com/auerlab/fasda/tree/main/Test. This latter is a set of test scripts for FASDA, a program that performs the com-
parison of counts for each gene.

Metagenomics Example
Below is a simple shell script implementation of the AmrPlusPlus pipeline, which, according to their website, is used to "charac-
terize the content and relative abundance of sequences of interest from the DNA of a given sample or set of samples".

People can use this pipeline by uploading their data to the developer’s website, or by installing the pipeline to their own Docker
container or Galaxy server.

Note At the time of this writing, November 2022, the AmrPlusPlus pipeline source on Github has not been updated for over five
years. This is typical of scientific pipelines for the reasons stated above.

In reality, the analysis is performed by the following command-line tools, which are developed by other parties and freely
available:

¢ Trimmomatic
*« BWA

e Samtools

https://github.com/auerlab/cnc-emdiff
https://github.com/auerlab/fasda/tree/main/Test

The Research Computing User’s Guide 185/574

* SNPFinder
* ResistomeAnalyzer

» RarefactionAnalyzer

The role of AmrPlusPlus is to coordinate the operation of these tools. AmrPlusPlus is itself a script.

If you don’t want to be dependent on their web service, a Galaxy server, or their Docker containers, or if you would like greater
control over and understanding of the analysis pipeline, or if you want to use the newer versions of tools such as samtools, you
can easily write your own script to run the above commands.

Also, when developing our own pipeline, we can substitute other tools that perform the same function, such as Cutadapt in place
of Trimmomatic, or Bowtie in place of BWA for alignment.

All of these tools are designed for "short-read" DNA sequences (on the order of 100 base pair per fragment). When we take
control of the process rather than rely on someone else’s pipeline, we open the possibility of developing an analogous pipeline
using a different set of tools for "long-read" sequences (on the order of 1000 base pair per fragment).

For our purposes, we install the above commands via FreeBSD ports and/or pkgsrc (on CentOS and Mac OS X). Then we just
write a Unix shell script to implement the pipeline for our data.

Note that this is a real pipeline used for research at the UWM School of Freshwater Science.

It is not important whether you understand genomics analysis for this example. Simply look at how the script uses loops and
other scripting constructs to see how the material you just learned can be used in actual research. L.e., don’t worry about what
cutadapt and bwa are doing with the data. Just see how they are run within the pipeline script, using redirection, command
line arguments, etc. Also read the comments within the script for a deeper understanding of what the conditionals and loops are
doing.

#!/bin/sh -e

Get gene fraction threshold from user
printf "Resistome threshold? "
read threshold

S

1. Enumerate input files
raw_files="SRRx.fastqg"

FHAF A A A S S
2. Quality control: Remove adapter sequences from raw data

for file in S$raw_files; do
output_file=trimmed-S$file
If the output file already exists, assume cutadapt was already run
successfully. Remove trimmed-* before running this script to force
cutadapt to run again.
if [! —-e $output_file]; then
cutadapt $file > S$Soutput_file
else
printf "Sraw already processed by cutadapt.\n"
fi
done

S

3. If sequences are from a host organism, remove host dna

Index resistance gene database

if [! —e megares_database_v1l.01l.fasta.ann]; then
bwa index megares_database_v1.01l.fasta

fi

The Research Computing User’s Guide 186 /574

G i o
4. Align to target database with bwa mem.

for file in S$raw_files; do
Output is an aligned sam file. Replace trimmed- prefix with aligned-
and replace .fastqg suffix with .sam
output_file=aligned-${file%.fastq}.sam
if [! —e S$Soutput_file]; then
printf "\nRunning bwa-mem on $file...\n"
bwa mem megares_database_v1.0l.fasta trimmed-$file > S$Soutput_file
else
printf "S$file already processed by bwa mem\n"
fi
done

FHEHH A H A A R
5. Resistome analysis.

aligned_files=aligned-+*.sam
for file in $aligned_files; do
if [! —-e ${file%.sam}group.tsv]; then
printf "\nRunning resistome analysis on $file...\n"
resistome -ref_fp megares_database_v1.01.fasta -sam_fp $file \
—annot_fp megares_annotations_v1.0l.csv \
—gene_fp ${file%.sam}gene.tsv \
—group_fp ${file%.sam}group.tsv \
-class_fp ${file%.sam}class.tsv \
-mech_fp ${file%.sam}mech.tsv \
-t Sthreshold
else
printf "S$file already processed by resistome.\n"
fi
done

S

6. Rarefaction analysis?

I generally write a companion to every analysis script to remove output files and allow a fresh start for the next attempt. Many
programs will detect when output already exists and either not attempt to rewrite it, or behave differently in other ways.

#!/bin/sh -e

rm —-f trimmed-x aligned-* aligned-x.tsv megaresx.fasta.x

4.18.5 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

1. What is an analysis pipeline?

Where do most analysis pipelines come from?

How useful are most pipelines to future projects?
What is the best way to use most existing pipelines?

What languages can be used to implement an analysis pipeline? Which are likely to be convenient?

A

What is a good way to restart a pipeline from the beginning?

The Research Computing User’s Guide

187 /574

4.19 Solutions to Practice Breaks

Script to search a file:

#!/bin/sh -e
1s

printf "Enter the name of the file to search: "
read file_name

if [-z "S$filename"]; then
printf "File name cannot be empty.\n" >> /dev/stderr
exit 65
fi
if [! —-f $file_name]; then
printf "$file_name is not a regular file.\n" >> /dev/stderr
exit 65
fi

head —n 5 $file_name

printf "Enter a string to search for in $file_name: "
read key

if [-z "Skey"]1; then
printf "Search string cannot be empty.\n" >> /dev/stderr
exit 65

fi

fgrep $key $file_name

The Research Computing User’s Guide 188 /574

Chapter 5

Data Management

5.1 What is Data Management?

Data management, in the context of research computing, refers to how research data is stored, formatted, and disseminated over
the long term.

Researchers who generate new data need to plan ahead in order to ensure that any data supporting their research conclusions will
be available in the future. The data could be used to reproduce or otherwise verify the research results, or could be analyzed in
new ways for completely different purposes.

5.2 Why Worry?

Confidence in science is based on transparency, and the ability to reproduce results by repeating experiments. Without access to
the raw data generated by, or used in your experiments, your experiments cannot be verified by others.

Given the often high cost of generating data, preserving data for future use can often prove to be far more cost-effective.

The National Science Foundation is now requiring all applicants to submit a detailed plan for preserving and disseminating
their research data. I.e., you will not be rewarded a grant from the NSF unless you clearly state your plans for long-term data
management.

5.3 Storage Logistics

There are many issues you will need to consider in order to plan well for data management. A few of those issues are discussed
in the sections that follow.

5.3.1 Data Format

When storing data only for yourself, you might not give this issue much thought. However, data management includes not only
preservation, but dissemination. If others will have access to your data, it must be in a format that is easy for them to read.

Many areas of science have developed standard data formats to help researchers and software applications interoperate. Research
needs are too diverse to cover all of the standard data formats here. The goal of this section is only to raise awareness and
encourage researchers to explore available standards before digging themselves into a hole.

Caution Changing the format of large amounts of your data at a later time could be a very frustrating and costly process.
It is highly advisable to decide on a standard data format before your research progresses too far.

The Research Computing User’s Guide 189/574

The best way to explore data formats is by talking to others in your specific field and studying options via the Internet. This will
help you develop a sense of what the emerging standards are in your niche.

5.3.2 Lifespan

Another very important question to ask is how long the data should be preserved. This will impact the cost of data management,
although not as much as you might think, assuming that storage costs continue to decline over the long term.

Generally, the harder it is to regenerate the data, the longer it should be preserved. Data that are easy to recreate may actually
cost more to store.

5.3.3 Security

If the data contain confidential information, such as personal health information (PHI) or financial records, it may be necessary
to restrict and track access to it. Regulations on PHI data are strict and somewhat complex, so they should be explored before
making any data management plans.

5.3.4 Safety

Data safety refers to the risk of data loss. If you’re using a service provider to store your data, this will generally be their
responsibility. They will maintain backups of data they store and provide a written guarantee about its availability.

If you are storing the data yourself, you’ll need to think about how to back it up and where. Backups should always be stored far
from the original data in order to protect against fire, theft, and other physical disasters. Backups in the same room are not safe
at all. Backups in the same building are somewhat more safe, while backups in a separate building or distant location are best.

5.3.5 Funding

Paying for long-term data storage is a complex issue. Depending on the cost involved, it may or may not be possible to pay for
it from a one-time grant allocation. Some institutions may provide data storage services, but in most cases, researchers will have
to make their own arrangements, such as purchasing hardware or purchasing storage space from a commercial service.

5.3.6 Storage Providers

There are a number of organizations that provide long-term data storage, provided by Universities, government organizations,
and private companies.

NIH’s GenBank is publicly-funded and stores genomic data at no charge to researchers, for the benefit of future medical and other
biological research. Commercial services offer very low-cost options, provided you do not need high-speed upload or download.
The cost increases along with the desired transfer speed. The best approach to selecting one is investigating their current service
offerings and talking to colleagues who have been down this road.

5.3.7 Managing Your Own Storage

If you must manage your own backup or archival storage for reasons of privacy, funding, etc., there are cost-effective and reliable
ways to do it.

The worst option is a USB thumb drive or other external disk that plugs into an interface on your computer such as USB.
Such devices are easily damaged, lost, disconnected, turned off, or stolen. Accidental disconnections or power loss can lead to
damaged file systems and lost files.

When using such a device, you are also limited to the file systems supported by the computer you plug it into. E.g. if you format
it for BSD, Linux, or Mac, you won’t be able to plug it into a Windows PC.

The Research Computing User’s Guide 190/574

A much safer option that’s nearly as cost-effective is a networked file server with a built-in RAID (redundant array of inexpensive
disks). With limited skills, you can build a file server using an inexpensive PC with two or more disks, and a specialized storage
OS such as TrueNAS or XigmaNAS. These FOSS (Free Open Source Software) products use the advanced ZFS file system to
provide redundancy in case of a disk failure, as well as data compression, encryption, snapshots, etc.

They are extremely easy to install and manage through a simple graphical interface. If you’re prepared to spend a little more,
you can also purchase a preconfigured TrueNAS box with commercial support.

You can house the file server anywhere, but preferably in a secure location with battery-backed power, such as a data center. If
you don’t have access to a data center, then choose the most secure location you can and purchase a small UPS (uninterruptable
power supply) along with the PC to protect it from brief power outages.

TrueNAS and XigmaNAS support all common network protocols such as NFS (Unix Network File System), SMB/CIFS (Win-
dows disk sharing), and AFS (Apple’s networked file system), so files on the server can be simultaneously accessed from any
computer on the network.

5.4 Data Storage on the Cluster

Storage on clusters is generally designed for speed, not long-term capacity or data safety. Data storage on clusters should be
considered temporary space. Space is limited, and users are constantly and rapidly generating new data. Hence, it is important
for all users to move data off the cluster as soon as possible in order to keep cluster storage available for other jobs.

This does not mean that you cannot leave data on the cluster for further analysis. However, all data generated on the cluster
should be immediately copied to another location after being generated, so that it will be safe from disasters such as hardware
failures or fires. It should be removed from the cluster as soon as it is safely stored in two other locations where it is accessible
for further analysis.

5.5 Data Transfer

Storage is not the only problem associated with big data. It also presents challenges with transferring data, especially over great
distances and across different computer platforms.

This can be particularly problematic for small organizations that do not have a very high bandwidth Internet connection. While
the Internet backbone may provide plenty of speed to transfer your research data in a reasonable amount of time, the connection
from the Internet into your building may be a severe bottleneck. This is known as the last mile problem.

One potential solution to this problem is to avoid transferring the data in the first place. Some organizations offer web-based
tools to allow users elsewhere to perform common analyses on their data without first downloading it. For example, if you want
to search for a DNA sequence in the genomes of many organisms, you can do so on the NCBI BLAST website. This means
uploading a short DNA sequence to the NCBI server rather than downloading many gigabytes of genome data.

Another potential solution is to simply perform a more selective transfer. Determining exactly which parts of the data to transfer
can involve a lot of manual labor, but it may save many hours or more of transfer time.

Sometimes the problem is not bandwidth, but user interface. The most common type of data transfer utilized ordinary tools like
a web browser or FTP client. These methods are collectively known as "data schlepping”. Data schlepping requires the user
to use a variety of tools to transfer data to and from various sites. It also often suffers from failures due to dropped network
connections, power outages, and other issues that are likely to interrupt a long transfer. Some tools, such as rsyne, allow an
interrupted transfer to continue from where it left off. However, not all sites offer rsync service.

Globus Transfer is an example of a web-based alternative for data transfer that has built-in capabilities for dealing with connection
issues, login credentials, and many other data transfer issues. It also overcomes bottlenecks associated with long-distance file
transfers. Downloading data with a web browser or curl over thousands of miles typically results in transfer speeds of 1 or 2
megabytes per second. Globus can often transfer over such distances at 50 megabytes per second. The down side is that Globus
and comparable high-speed transfer tools are commercial, and require a license and expertise to install and configure.

Data transfer tools are evolving rapidly in response to the growing needs presented by big data. Users should make it a habit to
continuously explore and reevaluate new and existing options.

https://en.wikipedia.org/wiki/TrueNAS
https://en.wikipedia.org/wiki/XigmaNAS
https://blast.ncbi.nlm.nih.gov/Blast.cgi

The Research Computing User’s Guide

191/574

5.6 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

~

N o »

10.
11.
12.

. What is ultimate the goal of scientific data management?
. When do we need to be concerned about the long-term storage of data?
. Who must devise a data management plan?

. Why is storage format an important consideration?

How long must data be stored?

Should data be made freely available?

How do we ensure data safety?

How much does it cost to store data?

What is the safest and most convenient type of local storage hardware? Why?
What is the least safe type of local storage hardware? Why?

When using an HPC cluster, why not just leave our data on the cluster?

Describe three possible ways to overcome the problem of transferring large amounts of data over a distance.

The Research Computing User’s Guide 192 /574

Part 11

Parallel Computing

The Research Computing User’s Guide 193 /574

Chapter 6

Parallel Computing

6.1 Introduction

6.1.1 Motivation

In 1976, Los Alamos National Laboratories purchased a Cray-1 supercomputer for $8.8 million. As the world’s fastest computer
at the time, it had 8 mebibytes (a little over 8 million bytes) of main memory and was capable of 160 million floating point
operations per second. (Source: http://www.cray.com/About/History.aspx)

The first draft of this manual was written in September 2010 on a $700 desktop computer with a gibibyte (a little over 1 billion
bytes) of main memory, and capable of over 2 billion floating point operations per second.

It may seem that today’s computers have made the supercomputer obsolete. However, there are still, and always will be many
problems that require far more computing power than any single processor can provide. There are many examples of highly
optimized programs that take months to run even with thousands of today’s processors. The volume and resolution of raw data
awaiting analysis has exploded in recent years due to advances in both research techniques and technology. Enormous amounts
of new data are being generated every day, and new ways to analyze old data are constantly being discovered.

6.1.2 Computing is not Programming

It is important to understand the difference between parallel computing and parallel programming. Parallel computing includes
any situation where multiple computations are being done at the same time.

This often involves running multiple instances of the same serial (single-processor) program at the same time, each with different
inputs. Typically, there is no communication or cooperation between the multiple instances as they run. This scenario is known
as embarrassingly parallel computing.

Parallel programming, on the other hand, involves writing a special program that will utilize multiple processors. The code
running on each processor will exchange information with the others in order to work together toward a common goal. This is
much more complex than embarrassingly parallel computing, but is necessary for many problems.

There are many types of parallel architectures, and each is suited for specific types of problems. Writing parallel programs is not
a process that can be easily generalized. Understanding of specific algorithms is crucial in determining if and how they can be
decomposed into independent subtasks, and what will be the most suitable parallel architecture on which to run them. Some of
the common parallel architectures are outlined in the following sections.

6.1.3 Practice

Note Be sure to thoroughly review the instructions in Section 0.2 before doing the practice problems below.

http://www.cray.com/About/History.aspx

The Research Computing User’s Guide 194 /574

1. How much has computing power increased since the 1970s?

2. Is there still a need for parallel computing, given the advances in computing?

6.2 Shared Memory and Multi-Core Technology

Around the year 2000, processor manufacturers hit what is known as the power wall, a barrier to clocking computer processors
faster than about 3 GHz due to the inability to dissipate the heat generated. The laws of thermodynamics indicate that all energy
put into any system (machine, biological organism, solar cell, etc) is ultimately converted to heat. Increasing the speed of a CPU
causes it to generate heat faster. All heat generated must be conducted through the materials in the chip to the surface and then
dissipated by a cooling system. While this hurdle will likely be overcome eventually, the industry has realized that processor
clock speeds cannot grow indefinitely, and have therefore turned their focus toward improving efficiency and parallelism.

As a result, most personal computers now come with multiple cores. Core is the modern term for what has been traditionally
known as the Central Processing Unit (CPU) or simply processor. The term core refers to a functional CPU. For a long time
before the age of multi-core technology, processor chips traditionally contained a single core, so CPU and core could be used
synonymously. Hence, the term CPU